
Adapting Ranking SVM to Document Retrieval
Yunbo CAO1, Jun XU2, Tie-Yan LIU1, Hang LI1, Yalou HUANG2, Hsiao-Wuen HON1

1Microsoft Research Asia,
No.49 Zhichun Road, Haidian District

Beijing, China, 100080
{yunbo.cao, tyliu, hangli, hon}@microsoft.com

2College of Software, Nankai University,
No.94 Weijin Road, Nankai District

Tianjin, China, 300071
nkxj@hotmail.com, yellow@nankai.edu.cn

ABSTRACT
The paper is concerned with applying learning to rank to
document retrieval. Ranking SVM is a typical method of learning
to rank. We point out that there are two factors one must
consider when applying Ranking SVM, in general a “learning to
rank” method, to document retrieval. First, correctly ranking
documents on the top of the result list is crucial for an
Information Retrieval system. One must conduct training in a
way that such ranked results are accurate. Second, the number of
relevant documents can vary from query to query. One must
avoid training a model biased toward queries with a large
number of relevant documents. Previously, when existing
methods that include Ranking SVM were applied to document
retrieval, none of the two factors was taken into consideration.
We show it is possible to make modifications in conventional
Ranking SVM, so it can be better used for document retrieval.
Specifically, we modify the “Hinge Loss” function in Ranking
SVM to deal with the problems described above. We employ two
methods to conduct optimization on the loss function: gradient
descent and quadratic programming. Experimental results show
that our method, referred to as Ranking SVM for IR, can
outperform the conventional Ranking SVM and other existing
methods for document retrieval on two datasets.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval – Retrieval Models

General Terms
Algorithms, Experimentation, Theory

Keywords
Information retrieval, loss function, Ranking SVM

1. INTRODUCTION
Ranking functions in document retrieval traditionally use a small
number of features (e.g., term frequency, inversed document
frequency, and document length), which makes it possible to
empirically tune ranking parameters [20]. Recently, however, a

growing number of features such as structural features, title text,
and anchor text, and query-independent features (e.g., PageRank
and URL length) have proved useful in document retrieval while
empirical tuning of ranking functions has become increasingly
difficult.

Fortunately, in recent years more and more human-judged
document retrieval results have become available. This makes it
possible to employ supervised learning methodologies in the
tuning of ranking functions. Many such efforts have been made
using these approaches.

In one of such effort, document retrieval is formalized as
classification of documents into two categories: relevant and
irrelevant. Nallapati [12], for example, formalizes document
retrieval as binary classification and solves the classification
problem using Support Vector Machines (SVM) and Maximum
Entropy (ME).

In another approach, document retrieval is formalized as a
“learning to rank” problem in which documents are mapped into
several ordered categories (ranks). OHSUMED [9] is a data
collection that contains multiple data categories or ranks:
definitely relevant, partially relevant, and irrelevant. Herbrich et
al. [8], for instance, propose a method of learning to rank on the
basis of SVM and apply their method to document retrieval. We
refer to their method as Ranking SVM (or conventional Ranking
SVM) in this paper. Specifically, Ranking SVM formalizes
learning to rank as a problem of classifying instance pairs into
two categories (correctly ranked and incorrectly ranked). Other
methods within this approach have also been proposed [1, 19,
24].

We explore the problem of applying learning to rank to
document retrieval and propose a new learning method on the
basis of Ranking SVM. We refer to the method as Ranking SVM
for IR.

We note two important factors to take into general
consideration when applying Ranking SVM in a learning method
for ranking documents being retrieved. Unfortunately, they are
ignored in the existing methods, such as Ranking SVM.

 (1) To have high accuracy on top-ranked documents is crucial
for an IR system. Analysis on click-through data from search
engines shows that users usually click on top-ranked documents
among returned search results [16, 17, 18]. The Normalized
Discounted Cumulated Gain (NDCG) measure [10] used in
evaluation of document retrieval also reflects this preference.
Therefore, it is necessary to perform training so that the top-
ranked results (equivalently the ranked results with regard to the
highest ranks) are generally accurate. However, in existing
learning methods such as Ranking SVM, the losses (penalties) of
incorrect ranking between higher ranks and lower ranks and
incorrect ranking among lower ranks are defined the same.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’06, August 6–11, 2006, Seattle, Washington, U.S.A.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

(2) In reality some queries may have many relevant documents,
while others may have a few. If we treat training data from
different queries as equal, then the model trained is biased
toward queries with many relevant documents. Therefore, it is
necessary to put higher weight on data from queries with fewer
relevant documents. However, in existing learning methods such
as Ranking SVM, the losses (penalties) from incorrect rankings
from different queries are defined the same.

To deal with the problems above, we propose using a new loss
function for Ranking SVM used in document retrieval. The loss
function is a modification of the Hinge Loss function in Ranking
SVM. Thus our method can be viewed as an adaptation of
Ranking SVM to document retrieval. Specifically, we set varying
losses for misclassification of instance pairs between different
rank pairs and for incongruent losses in the misclassification of
instance pairs from multiple queries. To reduce errors on top
rankings, the loss function heavily penalizes errors with regard to
the highest ranked documents. To increase influences of queries
with fewer relevant documents, the loss function heavily
penalizes errors from queries. We propose two learning methods
to optimize the cost function: gradient descent and quadratic
programming.

Experimental results indicate that Ranking SVM for IR can
outperform existing methods, including Ranking SVM on two
datasets. One dataset is OHSUMED [9], and the other is from a
commercial web search engine.

2. RELATED WORK
2.1 Document Retrieval
One key question in document retrieval is how to rank
documents based on their degrees of relevance to a query. Much
effort has been placed on the development of ranking functions.

Traditionally, document retrieval methods only use a small
number of features (e.g., term frequency, inversed document
frequency, and document length). Thus, it is possible to
empirically tune the parameters of ranking functions [20]. In that
sense, the methods are unsupervised. Okapi BM25 [14] and
language models for information retrieval (LMIR) [13, 21] are
such methods.

Currently, additional features have proved useful for document
retrieval, including structural features (e.g., title, anchor text,
and URL) and query-independent features (e.g., PageRank and
URL length). This increase in features makes empirical tuning of
parameters difficult. The paradigm of employing supervised
learning in construction of document retrieval models has drawn
recent attention.

For instance, document retrieval is formalized as classification.
Documents are judged within two categories: relevant and
irrelevant. Nallapati [12] formalizes document retrieval as binary
classification and solves it using SVM and Maximum Entropy.
Gao et al. [5] propose employing discriminative training in
creating a ranking model.

For another example, document retrieval is regarded as
learning to rank. Herbrich et al. [8] propose addressing the issue
by means of SVM and applying it to information retrieval. We
refer to the method as Ranking SVM in this paper. Joachims [11]
also applies the method to document retrieval. He utilizes click-
through data to deduce pair-wise training data for learning
Ranking SVM models. Burges et al. [1] propose employing

relative entropy as a loss function and gradient descent as an
algorithm to train a neural network model for document retrieval.

2.2 Learning to Rank
In learning to rank a number of categories are given and a total
order is assumed to exist over the categories. Labeled instances
are provided. Each instance is represented by a feature vector,
and each label denotes a rank. Existing methods fall into two
categories. They are referred to in this paper as “point-wise
training” and “pair-wise training”.

In point-wise training, each instance (and its rank) is used as
an independent training example. The goal of learning is to
correctly map instances into intervals.

For instance, Crammer et al. [4] propose a Perceptron-based
learning algorithm called PRank. PRank trains a Perceptron
model retaining not only a weight vector w

�

 but also a threshold
vector c

�

. The objective of learning in PRank is to find a
Perceptron model that successfully projects all the instances into
k subintervals defined byc

�

. See also [2, 3, 6, 15].
In pair-wise training each instance pair is used as a training

example and the goal of training is to correctly find the
differences between ranks of instance pairs.

For instance, the Herbrich et al. Ranking SVM [8] is such a
method. That model formalizes learning to rank as learning for
classification on pairs of instances and tackles the classification
issue by using SVM. See also [1, 15, 19].

For other work on learning to rank, refer to[22,23,24,25,26,27].

3. RANKING SVM
Assume that there exists an input space nRX ∈ , where n denotes
number of features. There exists an output space of ranks
(categories) represented by labels },,,{ 21 qrrrY ⋅⋅⋅= where q
denotes number of ranks. Further assume that there exists a total
order between the ranks

11 rrr qq ��� ⋅⋅⋅−
, where � denotes a

preference relationship. A set of ranking functions Ff ∈ exists
and each of them can determine the preference relations between
instances:

)()(jiji xfxfxx
���

�
� >⇔ , (1)

Suppose that we are given a set of ranked instances
t
iii yxS 1)},{(== � from the space YX × . The task here is to select

the best function f* from F that minimizes a given loss function
with respect to the given ranked instances.

Herbrich et al. [8] propose formalizing the above learning
problem as that of learning for classification on pairs of
instances.

First, we assume that f is a linear function.
xwxfw

���

� ,)(= , (2)

where w
�

denotes a vector of weights and ⋅⋅, stands for an inner

product. Plugging (2) into (1) we obtain

0, >−⇔ jiji xxwxx
����

�
� (3)

Note that the relation
ji xx

�

�
� between instance pairs

ix
� and

jx
�

is expressed by a new vector
ji xx

�� − . Next, we take any instance
pair and their relation to create a new vector and a new label. Let

(1)x
�

and (2)x
�

 denote the first and second instances, and let y(1)
and y(2) denote their ranks, then we have

(1) (2)
(1) (2)

(2) (1)
1,
1

y yx x z
y y

⎛ ⎞⎧+− = ⎨⎜ ⎟−⎩⎝ ⎠

� � �

�

 (4)

From the given training data set S, we create a new training
data set S' containing � labeled vectors.

l
iiii zxxS 1

)2()1(},{' =−= �� (5)

Next, we take S’ as classification data and construct a SVM
model that can assign either positive label z = +1 or negative
label z = -1 to any vector)2()1(xx

�� − .
Constructing the SVM model is equivalent to solving the

following Quadratic Optimization problem:
2

1
(1) (2)

1
min ()

2
subject to 0, , 1 1, ,

ξ

ξ ξ
=

= +

≥ − ≥ − =

∑
�

�

� �

� � �
� �

iw
i

i i i i i

M w w C

z w x x i

 (6)

Note that the optimization is (6) is equivalent to that in (7),

when 1

2C
λ = [7].

2(1) (2)

1

min 1 , ,i i i
w

i

z w x x wλ
+=

⎡ ⎤− − +⎣ ⎦∑
�

�

� � � � (7)

where subscript “+” indicates the positive part. The first term is
the so-called empirical Hinge Loss and the second term is
regularizer. In Figure 2, the solid line denotes the Hinge Loss
function of Ranking SVM.

Suppose that *w
� is the weights in the SVM solution.

Geometrically *w
� forms a vector orthogonal to the hyperplane of

Ranking SVM. We utilize *w
� to form a ranking function *w

f �
for

ranking instances.
*

*() ,wf x w x=�

� � � (8)

When Ranking SVM is applied to document retrieval, an
instance (feature vector) is created from one query-document pair
[1]. Each feature is defined as a function of query and document.
For instance, the feature of term frequency is determined by the
number of times in which the query term occurs in the document.
The instances from all queries are then combined in training.
There is no difference in treatments toward the instances from
different queries. Furthermore, there is no difference in
treatments between instance pairs from different rank pairs.

4. PROBLEM ANALYSIS
There are two important factors to consider when applying
learning to rank to IR. Let us take Ranking SVM as example and
use data from the OHSUMED collection to look at the problems.
OHSUMED [9] is data collection on document retrieval, as will
be further explained in Section 6.

In learning of Ranking SVM for IR, each instance x
�

is
generated from one query-document pair and is labeled with one
rank. There are three possible ranks: definitely relevant (r3),
partially relevant (r2), and irrelevant (r1). We plot the data to
observe its tendencies. Specifically, we conduct principle
component analysis (PCA) on the data and display its first and
second principle components.

Figure 1 (a) shows the results for two randomly selected
queries (query number 12 and 50). The horizontal axis and
vertical axis represent the first and second principle components
of the data. The circle, square, and triangle represent definitely

a

b

c

Figure 1: OSHUMED data (queries 12 and 50)

relevant partially relevant and irrelevant instances. The solid and
empty points represent the instances of query 12 and query 50.

The first factor is to intensify the training on the top rankings.
It is a problem that Ranking SVM does not take into
consideration. Figure 1 (b) shows the ranking models between
pairs of ranks: r3-r2, r3-r1, and r2-r1 (they are equivalent to the
conventional SVM). It also gives the ranking model of Ranking
SVM. Because Ranking SVM treats the instance pairs from all
rank pairs equally and there are more instances in the ranks of r2
and r1, the ranking model of Ranking SVM tends to be close to

that of r2-r1. This is not desirable, since it means that Ranking
SVM emphasizes ranking on the middle and bottom. Actually, it
should do the opposite. One solution to adjust the bias is to
change the cost or penalty of misclassification of instance pairs
between different rank pairs.

 The second factor is to avoid training a model heavily
influenced by queries with many relevant documents. It is also a
problem which Ranking SVM does not consider. Figure 1 (c)
shows the ranking models of Ranking SVM created individually
by the data of the two queries individually. It also provides the
ranking model created when the data of the two queries are
combined together. We see that the total ranking model tends to
be close to that of query 50, which has more relevant documents
(and thus more instance pairs), although it should not have such
a bias. One solution to the problem is to add a different weight to
data from queries with varied relevant documents.

Here, we show the results of two queries for ease of
explanation. In general, we observe that the same tendencies
exist for all queries in OSUMED.

One may argue that the characteristics of data depend on the
features used and with more features available the problems
described above may disappear. It is hard to anticipate what will
happen when more features are available. In our current data
analysis, we use all the conventional features utilized in
document retrieval and our experimental results indicate that,
with the features, we can achieve the same performance as those
of state-of-the-arts methods. Therefore, we can say that, at least
with the standard feature set, we observe the phenomena
explained above.

We also note that other learning to rank [1, 19, 24] methods
also do not take into consideration these two factors.

5. Ranking SVM for IR

5.1 Loss Function
To deal with the two problems described in Section 4, we define
a new loss function on the basis of Hinge Loss. In the loss
function as shown in (9), we add rank parametersτ ’s to adjust
the bias between rank pairs and add query parameters μ ’s to

adjust the bias across queries. We re-formalize the learning
problem of Ranking SVM for IR as that of minimizing the
following loss function.

2(1) (2)
() ()

1

min () 1 , ,k i q i i i i
w

i

L w z w x x wτ μ λ
+=

⎡ ⎤= − − +⎣ ⎦∑
�

�

� � � � � (9)

where k(i) denotes the type of ranks of instance pair
i,

)(ikτ denotes the rank parameter for k(i), q(i) denotes the query

of instance pair i , and
)(iqμ denotes the query parameter for q(i).

The penalty received by the ith pair is determined by the product
of

)(ikτ and
)(iqμ :

)()(iqik μτ . The idea of using different losses for

misclassification of input instances into different classes has
been proposed for other problems [28]. To the best of our
knowledge, this is the first attempt of it in document retrieval.

Figure 2 plots the shapes of different Hinge Loss functions
with different penalty parameters μτ ⋅ ’s. The x-axis represents

(1) (2)()z f x x⋅ −
� �

 and the y-axis represents loss. When
(1) (2)() 1.0z f x x⋅ − ≥

� �

, all the losses are zero. When

(1) (2)() 1.0z f x x⋅ − <� �

, the losses are linearly decreasing
functions, with different slops of μτ ⋅ ’s. If the product

μτ ⋅ equals 1.0, then the Hinge Loss function becomes the same
as that in Ranking SVM.

1τ μ⋅ =

2τ μ⋅ =

0.5τ μ⋅ =

(1) (2)()z f x x⋅ −� �

Figure 2: Hinge Loss functions with different penalty parameters

5.2 Determining Parameter Values
We then consider how to determine the values of the
parametersτ ’s and μ ’s.

For τ ’s, we propose a heuristic method for estimating the
parameters on the basis of simulation. Suppose that NDCG is
used in evaluation. (In principle, any other measure can be used).
We take the averaged drops in terms of NDCG as the parameter
values when randomly changing the positions of documents in
rankings. We make use of a set of labeled data. To calculate the
value of the parameter for a specific rank pair, we repeat the
following processes. For each query, we first find its perfect
ranking (NDCG@1 of the ranking is 1.0). We then randomly
select one document from each of the ranks and reverse their
positions. In this way we obtain a new ranking and we can
calculate its NDCG@1. Usually there is a drop in NDCG@1. We
calculate the average drops in NDCG over all the queries in the
dataset. Finally, we take the average performance drop as the
value of rank parameter for the rank pair.

 As for μ ’s, we define it as follows:

)}(with associated pairs instance{#

)}(with associated pairs instance{#max
)(iq

jq
j

iq =μ (10)

With such a parameter, we can more penalize the errors on the
queries with fewer instance pairs. As a result, the training will
be conducted equally over all queries.

5.3 Optimization Methods
In this section, we present two methods for optimizing the loss
function (9). The two methods are gradient descent and quadratic
programming.

5.3.1 Gradient Descent
The loss function in (9) can be rewritten as

2

1

(1) (2)
() ()

() () ,

() 1 ,

i
i

i k i q i i i i

L w l w w

where l w z w x x

λ

τ μ
=

+

= +

⎡ ⎤= − −⎣ ⎦

∑
�

� � �

� � � �

(11)

By differentiating (11) with respect to parameters w
� , we

obtain

1

(1) (2)

(1) (2) (1) (2)
() ()

()
2 ,

0 , 1()
() , 1

i

i

i i ii

i k i q i i i i i i

l wL
w

w w

if z w x xl w
where

z x x if z w x xw

λ

τ μ

=

∂∂ = +
∂ ∂

⎧ − ≥∂ ⎪= ⎨− − − <∂ ⎪⎩

∑
�

�

�

� �

� � �
�

� � � � ��

(12)

We then define the iteration equations of gradient descent as

)(min)(:

2
)(

)(

)()(

0

)()(

)(

1

)(
)()(

)()()1(

kkk
k

k
k

k

i

k
ikk

k
k

kk

wwLwwL

w
w

wl
wLw

www

����

�

�

�

��

���

�

Δ+=Δ+

−
∂

∂
−=−∇=Δ

Δ+=

≥

=

+

∑

ηηη

λ

η

η

(13)

Upon each iteration we reduce the cost function along its
descent direction, as in (12). To determine the step size of
iteration, we conduct a line search along the descent direction, as
described in (13). In practice, instead of calculating each

kη we

make all η ’s fixed. Figure 3 provides the algorithm.

1 1

() ()

(1) (2)
1

 Input:

 Training sample {(,)} , where (,) { }

 Learning rate 0, cost parameters { } and { }, penalty weight

 Make {((,),)} from ;

m
q q

k i q i

i i i i

S x y x y X r r r

S x x z S

w

η τ μ λ
−

=

= ∈ × ⋅⋅⋅

>

′ =

=

�

� �
� � �

� �

��

(1) (2) (1) (2)
() ()

0;

 (stop_condition isn't met){

 0;

 (0; ;){

 (, 1) ();

 }

 2 ;

 ;

 }

i i i i k i q i i i

while

w

for i i i

if z w x x w w z x x

w w w

w w w

retu

τ μ

λ
η

Δ =
= < + +

− < Δ = Δ + −

Δ = Δ −
= + Δ

��

�

� � � � � � �

� �

� � �

 ;rn w
�

Figure 3: Gradient descent algorithm

5.3.2 Quadratic Programming
In our method, instead of directly solving (9), we solve the
equivalent Quadratic Optimization problem as described below.

2

1
(1) (2)

1
min ()

2
subject to 0, , 1 1, ,

i i
w

i

i i i i i

M w w C

z w x x i

ξ

ξ ξ
=

= + ⋅

≥ − ≥ − =

∑
�

�

� �

� � �
� �

 (14)

This is because the following theorem holds.
Theorem 1: Criteria (9) and (14) are equivalent, with

() ()

2
k i q i

iC
τ μ

λ
= .

We will give the proof in the full version of the paper. It turns
out that the method creates a SVM model as solution.

For the optimization problem in (14), the Lagrange Function
can be written as

2 (1) (2)

1 1 1

1
, (1)

2P i i i i i i i i i
i i i

L w C z w x xξ α ξ μ ξ
= = =

⎡ ⎤= + ⋅ − − − − −⎣ ⎦∑ ∑ ∑
� � �

� � � �

 (15)

Then, the objective is to minimize (15) with respect to w
�

 and

iξ . Setting the respective derivatives to zero, we get

(1) (2)

1
i i i i

i

w z x xα
=

= −∑
�

� � � (16)

1, ,i i iC iα μ= − = � � (17)

as well as the positive constraints �,,1,, ⋅⋅⋅=iiii ξμα .

Substituting (16) and (17) into (15), we obtain the Lagrange dual
function.

(1) (2) (1) (2)
' ' ' '

1 1 ' 1

1
,

2
α α α

= = =

= − − −∑ ∑∑
� � �

� � � �

D i i i i i i i i i
i i i

L z z x x x x (18)

It gives a lower bound on the objective function (10). We
maximize LD subject to the constraints

0 1, ,i iC iα≤ ≤ = � � (19)

The objective function here is similar to that in Ranking SVM.
The only difference lies on the use of the box constraints on
parameter α� (19). For Ranking SVM, the upper bounds of
all �,,1, ⋅⋅⋅=iiα are the same (�,,1,0 ⋅⋅⋅=≤≤ iCiα). Here,

the upper bounds vary according to different types of pairs. A
larger Ci corresponds to a more important rank pair or a pair
from a query with fewer instances.

6. EXPERIMENTAL RESULTS
6.1 Evaluation Measures
As one measure for evaluating the results of ranking methods, we
used Normalized Discounted Cumulative Gain (NDCG) [10].
NDCG is a measure commonly used in IR, when there are more
than two categories in relevance ranking. Given a query qi, the
NDCG score at the position m in the ranking of documents
provided by a retrieval method is defined as

()

1

(2 1) / log(1)j

m
r

i i
j

N n j
=

= − +∑
 (20)

where r(j) is the rating of the jth document and ni is a
normalization constant. ni is chosen so that a perfect ranking’s
NDCG score is 1. For queries whose returned documents are less
than m, the NDCG score is only calculated for the returned
documents. In our experiments we measured NDCG at the
positions of 1, 3, and 5.

We also used Mean Average Precision (MAP) as evaluation
measure for evaluating ranking methods. MAP is widely used in
IR and is based on the assumption that there are two categories:
positive (relevant) and negative (irrelevant) in ranking of
instances (documents). MAP calculates the mean of average
precisions over a set of queries. Given a query qi, average
precision is defined as the average of precision after each
positive (relevant) instance is retrieved. Given a query qi, its
average precision (AvgPi) is calculated as:

1

() pos()

number of positive instances

M

i
j

P j j
AvgP

=

×=∑

(21)

where j is the rank, M is the number of instances retrieved, pos(j)
is a binary function to indicates whether the instance in the rank j
is positive (relevant), and P(j) is the precision at the given cut-off
rank j:

number of positive instances in top positions
()

j
P j

j
=

(22)

6.2 Our Method and Baseline Methods
We denote our method as Ranking SVM for IR (RSVM-IR). We
further denote RSVM-IR with the two optimization options,
gradient descent, and quadratic programming, as RSVM-IR-GD
and RSVM-IR-QP.

Obviously, we can have a method in which we only consider
the first factor in Section 4. That is, we set different rank
parameters for different rank pairs and set all the query
parameters as 1.0. We denote it as RSVM-IR-Rank. Similarly,
we can have a method of RSVM-IR-Query. In RSVM-IR-Rank
and RSVM-IR-Query, we only employ quadratic programming as
our optimization method.

Table 1: Features in ranking models. C(w, d) represents count
of word w in document d; C represents the entire collection; n
denotes the number of terms in the query; |.| denotes the size of
function; and idf(.) denotes the inverse document frequency.

FEATURE

1 log((,) 1)
i

i
q q d

c q d
∈ ∩

+∑

2
| |

(,)log(1)
∈ ∩

+∑ i

i

C
c q C

q q d

3 log(())
∈ ∩
∑

i

i
q q d

idf q
4

(,)
| |log(1)i

i

c q d

d
q q d∈ ∩

+∑

5
(,)

| |log(() 1)i

i

c q d
id

q q d

idf q
∈ ∩

⋅ +∑

6
(,) | |

| | (,)log(1)i

i

i

c q d C
d c q C

q q d∈ ∩
⋅ +∑

7 log(25)BM score

Table 2: p-values in Sign Test

p-values BM25 LMIR RSVM

RSVM-IR-QP 2.44E-13 2.28E-12 0.0391

Table 3: Top 5 documents with respect to query 9

 RSVM RSVM-IR-QP

Top 5 ranked doc p d d p n d p d n p

NDCG@1 0.3333 1.0

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

MAP NDCG@1 NDCG@3 NDCG@5

BM25

LMIR

RSVM

RSVM-IR-Rank

RSVM-IR-Query

RSVM-IR-QP

RSVM-IR-GD

Figure 4: Ranking accuracies on OHSUMED data

0
2
4
6
8

10
12
14
16
18

0-999

1000-1999

2000-2999

3000-3999

4000-4999

5000-5999

6000-6999

7000-7999

8000-8999

9000-9999

>= 10000

instance pairs per query

qu

er
ie

s

Figure 5: Distribution of queries over numbers of instance pairs

We use Ranking SVM (RSVM) as a baseline method in all the
experiments. Actually, Ranking SVM is a special case of
Ranking SVM for IR (RSVM-IR) when all the μτ ⋅ values
equals 1.0. We also compare our methods with BM25 [14] and
language model for information retrieval (LMIR) [21]. For both
BM25 and LMIR, we used the tool Lemur1 (Language Models
Toolkits for Information Retrieval).

6.3 Experiment with OHSUMED Data
In the experiment, we made use of the OHSUMED collection [9].
It is a collection of documents and queries on medicine,
consisting of 348,566 references and 106 queries. There are a
total of 16,140 query-document pairs upon which relevance
judgments where made. The relevance judgments are either d
(definitely relevant), p (possibly relevant), or n (not relevant).
The data have been used in many experiments in IR, for example,
the TREC-9 filtering track [14].

Each instance consists of a vector of features, determined by a
query and a document. We adopted the standard features used in
document retrieval [12]. Table 1 shows all the features. For
example, tf (term frequency), idf (inverse document frequency),
dl (document length), and their combinations are features. BM25
score is another feature, which is calculated using the ranking
method of BM25 [14]. We took log on the feature values in order
to reduce the effects of large numbers. This does not change the
tendencies of the results, based on preliminary experiments. Stop
words are removed and stemming is conducted in indexing and
retrieval.

In MAP calculation, we define the Category d as positive
(relevant) and the other two categories as negative (irrelevant).

We conducted 4-fold cross-validation. We tuned the
parameters for LMIR and BM25 with one of the trials and
applied them to the other trials directly. The results reported in
Figure 4 are the averaged of four trials. From Figure 4, we see
our methods (both RSVM-IR-QP and RSVM-IR-GD) outperform
Ranking SVM, BM25 and LMIR in terms of all measures.
Furthermore, RSVM-IR-QP and RSVM-IR-GD are better than
RSVM-IR-Rank and RSVM-IR-Query. The results indicate our
method improves the baseline methods. We effectively deal with
the two problems from which Ranking SVM suffers. We
conducted a Sign Test on the improvements of RSVM-IR-QP
over BM25, LMIR, and RSVM in terms of NDCG@1. The
results shown in Table 2 indicate that the improvements are
statistically significant (p-value < 0.05) in terms of NDCG@1. .

1 http://www.lemurproject.org/

Statistics on the distribution of instances in the OHSUMED
dataset include 2,252 query-documents labeled as d, 2,585
labeled as p, and 11,303 labeled as n. Note that rank n has the
largest number of instances, followed by p and d. The findings
confirm our observation in Figure 1(b). It explains why RSVM-
IR-Rank performs better than Ranking SVM (RSVM). We also
analyze the results and find that our method provides better
rankings on the highest ranks than Ranking SVM. For example,
for query 9 (“t-cell lymphoma associated with autoimmune
symptoms”). The top five documents returned by ranking SVM
and our method are listed in Table 3 (the scores of NDCG@1 are
also given). We note that both the ranking methods incorrectly
rank the two document pairs. Two (d, p) pairs reversed in the
ranking by Ranking SVM and one (d, p) and one (p, n) pairs are
reversed in the ranking by our method. However, the errors in
our method are less problematic, since they are not at the top.
The top-ranked results by Ranking SVM contain more errors
than those of our method, because our method is trained to better
perform at the top.

We also provide statistics on the number of instance pairs per
query, as shown in Figure 5. The queries are grouped into
different categories based on the ranges of the number of
instance pairs. For example, all the queries in the category 1000-
1999 should have instance pairs in between 1,000 and 1,999. We
can see that the numbers of instance pairs may vary from query
to query. As discussed in Section 4, we should consider a way to
adjust the discrepancy. The statistics also explain why RSVM-
IR-Query performs better than Ranking SVM.

In the example data in Section 4 (queries 12 and 50), we also
applied Ranking SVM and our methods to it. Figure 6 shows the
result in terms of NDCG@N (N = 1, 5, 10, …, 30). We clearly
observe that our method outperforms Ranking SVM, indicating
that it effectively deals with the problems Ranking SVM suffers
from.

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

0 5 10 15 20 25 30

N

N
D

C
G

@
N

RSVM RSVM-IR-Rank

RSVM-IR-Query RSVM-IR-QP

Figure 6: NDCG curves with respect to queries 12 and 50

6.4 Experiment with Web Search Data
In the experiment, we made use of a data collection from a
commercial web search engine. The collection consists of 2,198
queries. Human judges have made relevance judgments on
documents related to all queries. There are six ranks: “definitive”,
“excellent”, “good”, “fair”, “bad”, and “detrimental”. In total,
there are 74,276 query-document pairs (instances). Feature
vectors are also generated from the query-document pairs. There
are 426 features including those described in Section 6.3, as well
as those made from hyperlink, anchor text, URL, and PageRank.

We randomly split the data into training set and test set. The
training set had 1,109 queries and the test set had 1,089. We did
not use LMIR as the baseline.

For MAP calculation we used the top ranks “definitive”,
“excellent” and “good” as positive and the other ranks as
negative.

Figure 7 shows the performances on the test set. We see that
our methods (RSVM-IR-QP and RSVM-IR-GD) outperform all
the baselines in all measures. This indicates again that our
approach is effective for improving real IR problems. (We were
not able to apply LMIR to the data because we obtained the data
as feature vectors, not as documents. We were able to get results
for BM25 because BM25 score exists as one of the features.)

In the collection, 8,990 query-documents are labeled as
“definitive”, 4,403 as “excellent”, 3,735 labeled as “good”,
20463 labeled as “fair”, 36,375 as “bad”, and 310 labeled as
“detrimental”. RSVM-IR-Rank makes larger improvements over
Ranking SVM.

In contrast, we can also see that RSVM-IR-Query does not
make much improvement. In Figure 8, the statistics on the
dataset suggest the reason. Most of the queries fall into the range
of 0-99 and thus the second factor in Section 4 is not severe for
this dataset.

0.30

0.32

0.34

0.36

0.38

0.40

0.42

MAP NDCG@1 NDCG@3 NDCG@5

BM25

RSVM

RSVM-IR-Rank

RSVM-IR-Query

RSVM-IR-QP

RSVM-IR-GD

Figure 7: Ranking accuracies on web data

0

100

200

300

400

500

0-99

100-199

200-299

300-399

400-499

500-599

600-699

700-799

800-899

900-999
>=1000

instance pairs per query

qu

er
ie

s

Figure 8: Distribution of queries over numbers of instance pairs

7. CONCLUSION AND FUTURE WORK
In the paper, we have proposed a new method for document
retrieval on the basis of learning to rank.

There are two important factors that must be taken into
consideration when applying learning to rank to document
retrieval. One is to intensify training for top-ranked documents,
and the other is to avoid training a model biased toward queries
with many relevant documents. Existing learning to rank
methods for document retrieval, including Ranking SVM, does

not consider the two factors. We propose using a new loss
function to deal with ranking problems. The new loss function
naturally incorporates the two factors into the Hinge Loss
function used in Ranking SVM, with two types of additional
parameters. We employ gradient descent and quadratic
programming to optimize the loss function. Experimental results
indicate that our methods significantly outperform Ranking SVM
and other existing methods in document retrieval.

 We hope to explore future work in several areas, such as
conducting theoretical analysis on the proposed method, applying
the ideas to other loss functions, and developing loss functions
more suitable for document retrieval.

REFERENCES
[1] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.

Hamilton, and G. Hullender. Learning to Rank using
Gradient Descent. Proceedings of the 22nd International
Conference on Machine Learning, 2005.

[2] W. Chu and Z. Ghahramani. Gaussian Process for Ordinal
Regression. Technical Report. Univ. College London, 2004.

[3] W. Chu and S. Keerthi. New Approaches to Support Vector
Ordinal Regression. Proceedings of International
Conference on Machine Learning, 2005.

[4] K. Crammer and Y. Singer. Pranking with Ranking.
Advances in Neural Information Processing Systems 14,
pages 641-647, 2002.

[5] J. Gao, H. Qi, X. Xia, and J. Nie. Linear Discriminant
Model for Information Retrieval. Proceedings of the 28th
Annual ACM SIGIR Conference, 2005.

[6] E. F. Harrington. Online Ranking/Collaborative filtering
using the Perceptron Algorithm. Proceedings of the 20th
International Conference on Machine Learning, pages 250-
257, 2003.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: data mining, inference and prediction.
Springer-Verlag, 2001.

[8] R. Herbrich, T. Graepel, and K. Obermayer. Large Margin
Rank Boundaries for Ordinal Regression. Advances in Large
Margin Classifiers, pages 115-132, 2000.

[9] W. R. Hersh, C. Buckley, T. J. Leone, and D. H. Hickam.
OHSUMED: An interactive retrieval evaluation and new
large test collection for research. Proceedings of the 17th
Annual ACM SIGIR Conference, pages 192-201, 1994.

[10] K. Jarvelin and J. Kekalainen. IR evaluation methods for
retrieving highly relevant documents. Proceedings of the
23rd annual international ACM SIGIR conference on
Research and development in information retrieval, pages
41-48, 2000.

[11] T. Joachims. Optimizing Search Engines Using
Clickthrough Data. Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining, 2002.

[12] R. Nallapati. Discriminative models for information
retrieval. Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 64-71, 2004.

[13] J. Ponte and W. B. Croft. A language model approach to
information retrieval. Proceedings of the 21st annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 275-281, 1998.

[14] S. Robertson and D. A. Hull. The TREC-9 Filtering Track
Final Report. Proceedings of the 9th Text REtrieval
Conference, pages 25-40, 2000.

[15] A. Shashua and A. Levin. Taxonomy of Large Margin
Principle Algorithm for Ordinal Regression Problems.
Advances in Neural Information Processing Systems 15.
Cambridge, MA: MIT Press, 2000.

[16] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz.
Analysis of a Very Large AltaVista Query Log. Technical
Report SRC 1998-014, Digital Systems Research Center,
1998.

[17] A. Spink, B. J. Jansen, D. Wolfram, and T. Saracevic. From
e-sex to e-commerce: web search changes. IEEE Computer,
35(3), pages 107-109, 2002.

[18] A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic.
Searching the web: the public and their queries. Journal of
the American Society of Information Science and
Technology, 52(3), pages 226-234, 2001.

[19] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4, pages 933–969,
2003.

[20] G. Salton. The SMART Retrieval System: Experiments in
automatic document processing. Prentice-Hall, Englewood
Cliffs, NJ, 1971.

[21] J. Lafferty and C. Zhai Document Language Models, Query
Models, and Risk Minimization for Information Retrieval.
Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 111-119, 2001.

[22] D. Grangier and S. Bengio. Exploiting Hyperlinks to Learn
a Retrieval Model. Proceedings of NIPS Workshop, 2005.

[23] S. Rajaram and S. Agarwal Generalization Bounds for k-
Partite Ranking. Proceedings of NIPS Workshop, 2005.

[24] C. Burges. Ranking as Learning Structured Outputs.
Proceedings of NIPS Workshop, 2005.

[25] N. Usunier, V. Truong, R. A. Massih, and P. Gallinari,
Ranking with Unlabeled Data: A First Study. Proceedings of
NIPS Workshop, 2005.

[26] W. Chu and Z. Ghahramani Extensions of Gaussian
Processes for Ranking: Semi-Supervised and Active
Learning. Proceedings of NIPS Workshop, 2005.

[27] S. Yu, K. Yu, and V. Tresp, Collaborative Ordinal
Regression. Proceedings of NIPS Workshop, 2005.

[28] K. Morik, P. Brockhausen, and T. Joachims. Combining
statistical learning with a knowledge-based approach – A
case study in intensive care monitoring. Proceedings of
ICML, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

