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ABSTRACT 
The paper is concerned with applying learning to rank to 
document retrieval. Ranking SVM is a typical method of learning 
to rank.  We point out that there are two factors one must 
consider when applying Ranking SVM, in general a “learning to 
rank” method, to document retrieval. First, correctly ranking 
documents on the top of the result list is crucial for an 
Information Retrieval system. One must conduct training in a 
way that such ranked results are accurate. Second, the number of 
relevant documents can vary from query to query. One must 
avoid training a model biased toward queries with a large 
number of relevant documents. Previously, when existing 
methods that include Ranking SVM were applied to document 
retrieval, none of the two factors was taken into consideration. 
We show it is possible to make modifications in conventional 
Ranking SVM, so it can be better used for document retrieval. 
Specifically, we modify the “Hinge Loss” function in Ranking 
SVM to deal with the problems described above. We employ two 
methods to conduct optimization on the loss function: gradient 
descent and quadratic programming. Experimental results show 
that our method, referred to as Ranking SVM for IR, can 
outperform the conventional Ranking SVM and other existing 
methods for document retrieval on two datasets. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Information Search 
and Retrieval – Retrieval Models 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
Information retrieval, loss function, Ranking SVM 

1. INTRODUCTION 
Ranking functions in document retrieval traditionally use a small 
number of features (e.g., term frequency, inversed document 
frequency, and document length), which makes it possible to 
empirically tune ranking parameters [20]. Recently, however, a 

growing number of features such as structural features, title text, 
and anchor text, and query-independent features (e.g., PageRank 
and URL length) have proved useful in document retrieval while 
empirical tuning of ranking functions has become increasingly 
difficult.  

Fortunately, in recent years more and more human-judged 
document retrieval results have become available. This makes it 
possible to employ supervised learning methodologies in the 
tuning of ranking functions.  Many such efforts have been made 
using these approaches. 

In one of such effort, document retrieval is formalized as 
classification of documents into two categories: relevant and 
irrelevant. Nallapati [12], for example, formalizes document 
retrieval as binary classification and solves the classification 
problem using Support Vector Machines (SVM) and Maximum 
Entropy (ME).  

In another approach, document retrieval is formalized as a 
“learning to rank” problem in which documents are mapped into 
several ordered categories (ranks). OHSUMED [9] is a data 
collection that contains multiple data categories or ranks: 
definitely relevant, partially relevant, and irrelevant. Herbrich et 
al. [8], for instance, propose a method of learning to rank on the 
basis of SVM and apply their method to document retrieval. We 
refer to their method as Ranking SVM (or conventional Ranking 
SVM) in this paper. Specifically, Ranking SVM formalizes 
learning to rank as a problem of classifying instance pairs into 
two categories (correctly ranked and incorrectly ranked). Other 
methods within this approach have also been proposed [1, 19, 
24]. 

We explore the problem of applying learning to rank to 
document retrieval and propose a new learning method on the 
basis of Ranking SVM. We refer to the method as Ranking SVM 
for IR. 

We note two important factors to take into general 
consideration when applying Ranking SVM in a learning method 
for ranking documents being retrieved. Unfortunately, they are 
ignored in the existing methods, such as Ranking SVM.  

 (1) To have high accuracy on top-ranked documents is crucial 
for an IR system. Analysis on click-through data from search 
engines shows that users usually click on top-ranked documents 
among returned search results [16, 17, 18]. The Normalized 
Discounted Cumulated Gain (NDCG) measure [10] used in 
evaluation of document retrieval also reflects this preference. 
Therefore, it is necessary to perform training so that the top-
ranked results (equivalently the ranked results with regard to the 
highest ranks) are generally accurate. However, in existing 
learning methods such as Ranking SVM, the losses (penalties) of 
incorrect ranking between higher ranks and lower ranks and 
incorrect ranking among lower ranks are defined the same.  
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(2) In reality some queries may have many relevant documents, 
while others may have a few. If we treat training data from 
different queries as equal, then the model trained is biased 
toward queries with many relevant documents. Therefore, it is 
necessary to put higher weight on data from queries with fewer 
relevant documents. However, in existing learning methods such 
as Ranking SVM, the losses (penalties) from incorrect rankings 
from different queries are defined the same. 

To deal with the problems above, we propose using a new loss 
function for Ranking SVM used in document retrieval. The loss 
function is a modification of the Hinge Loss function in Ranking 
SVM. Thus our method can be viewed as an adaptation of 
Ranking SVM to document retrieval. Specifically, we set varying 
losses for misclassification of instance pairs between different 
rank pairs and for incongruent losses in the misclassification of 
instance pairs from multiple queries. To reduce errors on top 
rankings, the loss function heavily penalizes errors with regard to 
the highest ranked documents. To increase influences of queries 
with fewer relevant documents, the loss function heavily 
penalizes errors from queries. We propose two learning methods 
to optimize the cost function: gradient descent and quadratic 
programming. 

Experimental results indicate that Ranking SVM for IR can 
outperform existing methods, including Ranking SVM on two 
datasets. One dataset is OHSUMED [9], and the other is from a 
commercial web search engine. 

2. RELATED WORK 
2.1 Document Retrieval 
One key question in document retrieval is how to rank 
documents based on their degrees of relevance to a query. Much 
effort has been placed on the development of ranking functions.  

Traditionally, document retrieval methods only use a small 
number of features (e.g., term frequency, inversed document 
frequency, and document length). Thus, it is possible to 
empirically tune the parameters of ranking functions [20]. In that 
sense, the methods are unsupervised. Okapi BM25 [14] and 
language models for information retrieval (LMIR) [13, 21] are 
such methods.  

Currently, additional features have proved useful for document 
retrieval, including structural features (e.g., title, anchor text, 
and URL) and query-independent features (e.g., PageRank and 
URL length). This increase in features makes empirical tuning of 
parameters difficult. The paradigm of employing supervised 
learning in construction of document retrieval models has drawn 
recent attention. 

For instance, document retrieval is formalized as classification. 
Documents are judged within two categories: relevant and 
irrelevant. Nallapati [12] formalizes document retrieval as binary 
classification and solves it using SVM and Maximum Entropy. 
Gao et al. [5] propose employing discriminative training in 
creating a ranking model. 

For another example, document retrieval is regarded as 
learning to rank. Herbrich et al. [8] propose addressing the issue 
by means of SVM and applying it to information retrieval. We 
refer to the method as Ranking SVM in this paper. Joachims [11] 
also applies the method to document retrieval. He utilizes click-
through data to deduce pair-wise training data for learning 
Ranking SVM models. Burges et al. [1] propose employing 

relative entropy as a loss function and gradient descent as an 
algorithm to train a neural network model for document retrieval. 

2.2 Learning to Rank 
In learning to rank a number of categories are given and a total 
order is assumed to exist over the categories. Labeled instances 
are provided. Each instance is represented by a feature vector, 
and each label denotes a rank. Existing methods fall into two 
categories. They are referred to in this paper as “point-wise 
training” and “pair-wise training”.  

In point-wise training, each instance (and its rank) is used as 
an independent training example. The goal of learning is to 
correctly map instances into intervals.  

For instance, Crammer et al. [4] propose a Perceptron-based 
learning algorithm called PRank. PRank trains a Perceptron 
model retaining not only a weight vector w

�

 but also a threshold 
vector c

�

. The objective of learning in PRank is to find a 
Perceptron model that successfully projects all the instances into 
k subintervals defined byc

�

. See also [2, 3, 6, 15].  
In pair-wise training each instance pair is used as a training 

example and the goal of training is to correctly find the 
differences between ranks of instance pairs.  

For instance, the Herbrich et al. Ranking SVM [8] is such a 
method. That model formalizes learning to rank as learning for 
classification on pairs of instances and tackles the classification 
issue by using SVM. See also [1, 15, 19]. 

For other work on learning to rank, refer to[22,23,24,25,26,27]. 

3. RANKING SVM 
Assume that there exists an input space nRX ∈ , where n denotes 
number of features. There exists an output space of ranks 
(categories) represented by labels },,,{ 21 qrrrY ⋅⋅⋅= where q 
denotes number of ranks. Further assume that there exists a total 
order between the ranks

11 rrr qq ��� ⋅⋅⋅−
, where �  denotes a 

preference relationship. A set of ranking functions Ff ∈  exists 
and each of them can determine the preference relations between 
instances:  

)()( jiji xfxfxx
���

�
� >⇔ , (1) 

Suppose that we are given a set of ranked instances 
t
iii yxS 1)},{( == � from the space YX × . The task here is to select 

the best function f* from F that minimizes a given loss function 
with respect to the given ranked instances. 

Herbrich et al. [8] propose formalizing the above learning 
problem as that of learning for classification on pairs of 
instances. 

First, we assume that f is a linear function.  
xwxfw

���

� ,)( = , (2) 

where w
�

denotes a vector of weights and ⋅⋅,  stands for an inner 

product. Plugging (2) into (1) we obtain 

0, >−⇔ jiji xxwxx
����

�
�  (3) 

Note that the relation
ji xx

�

�
� between instance pairs 

ix
� and 

jx
�  

is expressed by a new vector
ji xx

�� − . Next, we take any instance 
pair and their relation to create a new vector and a new label. Let 

(1)x
�

and (2)x
�

 denote the first and second instances, and let y(1) 
and y(2) denote their ranks, then we have 



(1) ( 2)
(1) ( 2)

( 2) (1)
1,
1

y yx x z
y y

⎛ ⎞⎧+− = ⎨⎜ ⎟−⎩⎝ ⎠

� � �

�

 (4) 

From the given training data set S, we create a new training 
data set S' containing � labeled vectors.  

l
iiii zxxS 1

)2()1( },{' =−= ��  (5) 

Next, we take S’ as classification data and construct a SVM 
model that can assign either positive label z = +1 or negative 
label z = -1 to any vector )2()1( xx

�� −  .  
Constructing the SVM model is equivalent to solving the 

following Quadratic Optimization problem: 
2

1
(1) (2 )

1
min ( )

2
subject to 0, , 1 1, ,

ξ

ξ ξ
=

= +

≥ − ≥ − =

∑
�

�

� �
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� �

iw
i
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Note that the optimization is (6) is equivalent to that in (7), 

when 1

2C
λ = [7].  

2(1) (2)

1

min 1 , ,i i i
w

i

z w x x wλ
+=

⎡ ⎤− − +⎣ ⎦∑
�

�

� � � �  (7) 

where subscript “+” indicates the positive part. The first term is 
the so-called empirical Hinge Loss and the second term is 
regularizer. In Figure 2, the solid line denotes the Hinge Loss 
function of Ranking SVM. 

Suppose that *w
� is the weights in the SVM solution. 

Geometrically *w
� forms a vector orthogonal to the hyperplane of 

Ranking SVM. We utilize *w
�  to form a ranking function *w

f �
for 

ranking instances.  
*

*( ) ,wf x w x=�

� � �  (8) 

When Ranking SVM is applied to document retrieval, an 
instance (feature vector) is created from one query-document pair 
[1]. Each feature is defined as a function of query and document. 
For instance, the feature of term frequency is determined by the 
number of times in which the query term occurs in the document. 
The instances from all queries are then combined in training. 
There is no difference in treatments toward the instances from 
different queries. Furthermore, there is no difference in 
treatments between instance pairs from different rank pairs. 

4. PROBLEM ANALYSIS 
There are two important factors to consider when applying 
learning to rank to IR. Let us take Ranking SVM as example and 
use data from the OHSUMED collection to look at the problems. 
OHSUMED [9] is data collection on document retrieval, as will 
be further explained in Section 6. 

In learning of Ranking SVM for IR, each instance x
�

is 
generated from one query-document pair and is labeled with one 
rank. There are three possible ranks: definitely relevant (r3), 
partially relevant (r2), and irrelevant (r1). We plot the data to 
observe its tendencies. Specifically, we conduct principle 
component analysis (PCA) on the data and display its first and 
second principle components.  

Figure 1 (a) shows the results for two randomly selected 
queries (query number 12 and 50). The horizontal axis and 
vertical axis represent the first and second principle components 
of the data. The circle, square, and triangle represent definitely  

a 

 

b 

 

c 

 

Figure 1: OSHUMED data (queries 12 and 50) 

 
relevant partially relevant and irrelevant instances. The solid and 
empty points represent the instances of query 12 and query 50. 

The first factor is to intensify the training on the top rankings. 
It is a problem that Ranking SVM does not take into 
consideration. Figure 1 (b) shows the ranking models between 
pairs of ranks: r3-r2, r3-r1, and r2-r1 (they are equivalent to the 
conventional SVM). It also gives the ranking model of Ranking 
SVM. Because Ranking SVM treats the instance pairs from all 
rank pairs equally and there are more instances in the ranks of r2 
and r1, the ranking model of Ranking SVM tends to be close to 



that of r2-r1. This is not desirable, since it means that Ranking 
SVM emphasizes ranking on the middle and bottom. Actually, it 
should do the opposite. One solution to adjust the bias is to 
change the cost or penalty of misclassification of instance pairs 
between different rank pairs. 

 The second factor is to avoid training a model heavily 
influenced by queries with many relevant documents. It is also a 
problem which Ranking SVM does not consider. Figure 1 (c) 
shows the ranking models of Ranking SVM created individually 
by the data of the two queries individually. It also provides the 
ranking model created when the data of the two queries are 
combined together. We see that the total ranking model tends to 
be close to that of query 50, which has more relevant documents 
(and thus more instance pairs), although it should not have such 
a bias. One solution to the problem is to add a different weight to 
data from queries with varied relevant documents.  

Here, we show the results of two queries for ease of 
explanation. In general, we observe that the same tendencies 
exist for all queries in OSUMED.  

One may argue that the characteristics of data depend on the 
features used and with more features available the problems 
described above may disappear. It is hard to anticipate what will 
happen when more features are available. In our current data 
analysis, we use all the conventional features utilized in 
document retrieval and our experimental results indicate that, 
with the features, we can achieve the same performance as those 
of state-of-the-arts methods. Therefore, we can say that, at least 
with the standard feature set, we observe the phenomena 
explained above. 

We also note that other learning to rank [1, 19, 24] methods 
also do not take into consideration these two factors. 

5. Ranking SVM for IR 

5.1 Loss Function 
To deal with the two problems described in Section 4, we define 
a new loss function on the basis of Hinge Loss. In the loss 
function as shown in (9), we add rank parametersτ ’s to adjust 
the  bias between rank pairs and add query parameters μ ’s to 

adjust the bias across queries. We re-formalize the learning 
problem of Ranking SVM for IR as that of minimizing the 
following loss function.  

2(1) (2)
( ) ( )

1

min ( ) 1 , ,k i q i i i i
w

i

L w z w x x wτ μ λ
+=

⎡ ⎤= − − +⎣ ⎦∑
�

�

� � � � �  (9) 

where k(i) denotes the type of ranks of instance pair 
i,

)(ikτ denotes the rank parameter for k(i),  q(i) denotes the query 

of instance pair i , and
)( iqμ denotes the query parameter for q(i). 

The penalty received by the ith pair is determined by the product 
of

)(ikτ and
)(iqμ : 

)()( iqik μτ . The idea of using different losses for 

misclassification of input instances into different classes has 
been proposed for other problems [28]. To the best of our 
knowledge, this is the first attempt of it in document retrieval. 

Figure 2 plots the shapes of different Hinge Loss functions 
with different penalty parameters μτ ⋅ ’s.  The x-axis represents 

(1) (2)( )z f x x⋅ −
� �

 and the y-axis represents loss. When 
(1) (2)( ) 1.0z f x x⋅ − ≥

� �

, all the losses are zero. When 

(1) (2)( ) 1.0z f x x⋅ − <� �

, the losses are linearly decreasing 
functions, with different slops of μτ ⋅ ’s.  If the product 

μτ ⋅ equals 1.0, then the Hinge Loss function becomes the same 
as that in Ranking SVM.  
 

1τ μ⋅ =

2τ μ⋅ =

0.5τ μ⋅ =

(1) (2)( )z f x x⋅ −� �

 

Figure 2: Hinge Loss functions with different penalty parameters 

5.2 Determining Parameter Values 
We then consider how to determine the values of the 
parametersτ ’s and μ ’s.  

For τ ’s, we propose a heuristic method for estimating the 
parameters on the basis of simulation. Suppose that NDCG is 
used in evaluation. (In principle, any other measure can be used). 
We take the averaged drops in terms of NDCG as the parameter 
values when randomly changing the positions of documents in 
rankings. We make use of a set of labeled data. To calculate the 
value of the parameter for a specific rank pair, we repeat the 
following processes. For each query, we first find its perfect 
ranking (NDCG@1 of the ranking is 1.0). We then randomly 
select one document from each of the ranks and reverse their 
positions. In this way we obtain a new ranking and we can 
calculate its NDCG@1. Usually there is a drop in NDCG@1. We 
calculate the average drops in NDCG over all the queries in the 
dataset. Finally, we take the average performance drop as the 
value of rank parameter for the rank pair. 

 As for μ ’s, we define it as follows: 

)}( with associated pairs instance{#

)}( with associated pairs instance{#max
)( iq

jq
j

iq =μ  (10) 

With such a parameter, we can more penalize the errors on the 
queries with fewer instance pairs. As a result, the training will 
be conducted equally over all queries. 

5.3 Optimization Methods 
In this section, we present two methods for optimizing the loss 
function (9). The two methods are gradient descent and quadratic 
programming.  

5.3.1 Gradient Descent 
The loss function in (9) can be rewritten as 

2

1

(1) ( 2 )
( ) ( )

( ) ( ) ,

( ) 1 ,

i
i

i k i q i i i i

L w l w w

where l w z w x x

λ

τ μ
=

+

= +
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∑
�

� � �
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(11) 



By differentiating (11) with respect to parameters w
� , we 

obtain 

1

(1) (2)

(1) (2) (1) ( 2)
( ) ( )

( )
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0 , 1( )
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i

i
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We then define the iteration equations of gradient descent as 
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(13) 

Upon each iteration we reduce the cost function along its 
descent direction, as in (12). To determine the step size of 
iteration, we conduct a line search along the descent direction, as 
described in (13). In practice, instead of calculating each

kη we 

make all η ’s fixed. Figure 3 provides the algorithm. 
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Figure 3: Gradient descent algorithm 

5.3.2 Quadratic Programming  
In our method, instead of directly solving (9), we solve the 
equivalent Quadratic Optimization problem as described below.  

2

1
(1) (2)

1
min ( )

2
subject to 0, , 1 1, ,

i i
w

i

i i i i i

M w w C

z w x x i

ξ

ξ ξ
=

= + ⋅

≥ − ≥ − =

∑
�

�

� �
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� �

 (14) 

This is because the following theorem holds. 
Theorem 1: Criteria (9) and (14) are equivalent, with 

( ) ( )

2
k i q i

iC
τ μ

λ
= .  

We will give the proof in the full version of the paper. It turns 
out that the method creates a SVM model as solution. 

For the optimization problem in (14), the Lagrange Function 
can be written as  

2 (1) ( 2)

1 1 1

1
, (1 )

2P i i i i i i i i i
i i i

L w C z w x xξ α ξ μ ξ
= = =

⎡ ⎤= + ⋅ − − − − −⎣ ⎦∑ ∑ ∑
� � �

� � � �

            (15) 

Then, the objective is to minimize (15) with respect to w
�

 and 

iξ . Setting the respective derivatives to zero, we get  

(1) (2 )

1
i i i i

i

w z x xα
=

= −∑
�

� � �  (16) 

1, ,i i iC iα μ= − = � �  (17) 

as well as the positive constraints �,,1,, ⋅⋅⋅=iiii ξμα . 

Substituting (16) and (17) into (15), we obtain the Lagrange dual 
function. 

(1) (2 ) (1) (2 )
' ' ' '

1 1 ' 1

1
,

2
α α α

= = =

= − − −∑ ∑∑
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� � � �

D i i i i i i i i i
i i i

L z z x x x x  (18) 

It gives a lower bound on the objective function (10). We 
maximize LD subject to the constraints  

0 1, ,i iC iα≤ ≤ = � �  (19) 

The objective function here is similar to that in Ranking SVM. 
The only difference lies on the use of the box constraints on 
parameter α� (19). For Ranking SVM, the upper bounds of 
all �,,1, ⋅⋅⋅=iiα are the same ( �,,1,0 ⋅⋅⋅=≤≤ iCiα ). Here, 

the upper bounds vary according to different types of pairs. A 
larger Ci corresponds to a more important rank pair or a pair 
from a query with fewer instances. 

6. EXPERIMENTAL RESULTS  
6.1 Evaluation Measures  
As one measure for evaluating the results of ranking methods, we 
used Normalized Discounted Cumulative Gain (NDCG) [10]. 
NDCG is a measure commonly used in IR, when there are more 
than two categories in relevance ranking. Given a query qi, the 
NDCG score at the position m in the ranking of documents 
provided by a retrieval method is defined as  

( )

1

(2 1) / log(1 )j

m
r

i i
j

N n j
=

= − +∑
 (20) 

where r(j) is the rating of the jth document and ni is a 
normalization constant. ni is chosen so that a perfect ranking’s 
NDCG score is 1. For queries whose returned documents are less 
than m, the NDCG score is only calculated for the returned 
documents. In our experiments we measured NDCG at the 
positions of 1, 3, and 5. 

We also used Mean Average Precision (MAP) as evaluation 
measure for evaluating ranking methods. MAP is widely used in 
IR and is based on the assumption that there are two categories: 
positive (relevant) and negative (irrelevant) in ranking of 
instances (documents). MAP calculates the mean of average 
precisions over a set of queries. Given a query qi, average 
precision is defined as the average of precision after each 
positive (relevant) instance is retrieved. Given a query qi, its 
average precision (AvgPi) is calculated as: 

1

( ) pos( )

number of  positive instances

M

i
j

P j j
AvgP

=

×=∑
 

(21) 

where j is the rank, M is the number of instances retrieved, pos(j) 
is a binary function to indicates whether the instance in the rank j 
is positive (relevant), and P(j) is the precision at the given cut-off 
rank j: 



number of  positive instances in top  positions
( )

j
P j

j
=  

(22) 

6.2 Our Method and Baseline Methods 
We denote our method as Ranking SVM for IR (RSVM-IR). We 
further denote RSVM-IR with the two optimization options, 
gradient descent, and quadratic programming, as RSVM-IR-GD 
and RSVM-IR-QP.  

Obviously, we can have a method in which we only consider 
the first factor in Section 4. That is, we set different rank 
parameters for different rank pairs and set all the query 
parameters as 1.0. We denote it as RSVM-IR-Rank. Similarly, 
we can have a method of RSVM-IR-Query. In RSVM-IR-Rank 
and RSVM-IR-Query, we only employ quadratic programming as 
our optimization method.  

Table 1: Features in ranking models. C(w, d) represents count 
of word w in document d; C represents the entire collection; n 
denotes the number of terms in the query; |.| denotes the size of 
function; and idf(.) denotes the inverse document frequency.  
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Table 2: p-values in Sign Test 

p-values BM25 LMIR RSVM 

RSVM-IR-QP 2.44E-13 2.28E-12 0.0391 

 
Table 3: Top 5 documents with respect to query 9 

 RSVM RSVM-IR-QP 

Top 5 ranked doc p d d p n d p d n p 

NDCG@1 0.3333 1.0 
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Figure 4: Ranking accuracies on OHSUMED data 
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Figure 5: Distribution of queries over numbers of instance pairs 

We use Ranking SVM (RSVM) as a baseline method in all the 
experiments. Actually, Ranking SVM is a special case of  
Ranking SVM for IR (RSVM-IR) when all the μτ ⋅  values 
equals 1.0. We also compare our methods with BM25 [14] and 
language model for information retrieval (LMIR) [21]. For both 
BM25 and LMIR, we used the tool Lemur1 (Language Models 
Toolkits for Information Retrieval). 

6.3 Experiment with OHSUMED Data 
In the experiment, we made use of the OHSUMED collection [9]. 
It is a collection of documents and queries on medicine, 
consisting of 348,566 references and 106 queries. There are a 
total of 16,140 query-document pairs upon which relevance 
judgments where made. The relevance judgments are either d 
(definitely relevant), p (possibly relevant), or n (not relevant). 
The data have been used in many experiments in IR, for example, 
the TREC-9 filtering track [14].  

Each instance consists of a vector of features, determined by a 
query and a document. We adopted the standard features used in 
document retrieval [12]. Table 1 shows all the features. For 
example, tf (term frequency), idf (inverse document frequency), 
dl (document length), and their combinations are features. BM25 
score is another feature, which is calculated using the ranking 
method of BM25 [14]. We took log on the feature values in order 
to reduce the effects of large numbers. This does not change the 
tendencies of the results, based on preliminary experiments. Stop 
words are removed and stemming is conducted in indexing and 
retrieval.  

In MAP calculation, we define the Category d as positive 
(relevant) and the other two categories as negative (irrelevant). 

We conducted 4-fold cross-validation. We tuned the 
parameters for LMIR and BM25 with one of the trials and 
applied them to the other trials directly. The results reported in 
Figure 4 are the averaged of four trials. From Figure 4, we see 
our methods (both RSVM-IR-QP and RSVM-IR-GD) outperform 
Ranking SVM, BM25 and LMIR in terms of all measures. 
Furthermore, RSVM-IR-QP and RSVM-IR-GD are better than 
RSVM-IR-Rank and RSVM-IR-Query. The results indicate our 
method improves the baseline methods. We effectively deal with 
the two problems from which Ranking SVM suffers. We 
conducted a Sign Test on the improvements of RSVM-IR-QP 
over BM25, LMIR, and RSVM in terms of NDCG@1. The 
results shown in Table 2 indicate that the improvements are 
statistically significant (p-value < 0.05) in terms of NDCG@1.  . 
                                                             
1 http://www.lemurproject.org/  



Statistics on the distribution of instances in the OHSUMED 
dataset include 2,252 query-documents labeled as d, 2,585 
labeled as p, and 11,303 labeled as n. Note that rank n has the 
largest number of instances, followed by p and d.  The findings 
confirm our observation in Figure 1(b). It explains why RSVM-
IR-Rank performs better than Ranking SVM (RSVM). We also 
analyze the results and find that our method provides better 
rankings on the highest ranks than Ranking SVM. For example, 
for query 9 (“t-cell lymphoma associated with autoimmune 
symptoms”). The top five documents returned by ranking SVM 
and our method are listed in Table 3 (the scores of NDCG@1 are 
also given). We note that both the ranking methods incorrectly 
rank the two document pairs. Two (d, p) pairs reversed in the 
ranking by Ranking SVM and one (d, p) and one (p, n) pairs are 
reversed in the ranking by our method. However, the errors in 
our method are less problematic, since they are not at the top. 
The top-ranked results by Ranking SVM contain more errors 
than those of our method, because our method is trained to better 
perform at the top.  

We also provide statistics on the number of instance pairs per 
query, as shown in Figure 5. The queries are grouped into 
different categories based on the ranges of the number of 
instance pairs. For example, all the queries in the category 1000-
1999 should have instance pairs in between 1,000 and 1,999. We 
can see that the numbers of instance pairs may vary from query 
to query. As discussed in Section 4, we should consider a way to 
adjust the discrepancy. The statistics also explain why RSVM-
IR-Query performs better than Ranking SVM. 

In the example data in Section 4 (queries 12 and 50), we also 
applied Ranking SVM and our methods to it. Figure 6 shows the 
result in terms of NDCG@N (N = 1, 5, 10, …, 30). We clearly 
observe that our method outperforms Ranking SVM, indicating 
that it effectively deals with the problems Ranking SVM suffers 
from.  
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Figure 6: NDCG curves with respect to queries 12 and 50 

6.4 Experiment with Web Search Data  
In the experiment, we made use of a data collection from a 
commercial web search engine. The collection consists of 2,198 
queries. Human judges have made relevance judgments on 
documents related to all queries. There are six ranks: “definitive”, 
“excellent”, “good”, “fair”, “bad”, and “detrimental”. In total, 
there are 74,276 query-document pairs (instances). Feature 
vectors are also generated from the query-document pairs. There 
are 426 features including those described in Section 6.3, as well 
as those made from hyperlink, anchor text, URL, and PageRank.   

We randomly split the data into training set and test set. The 
training set had 1,109 queries and the test set had 1,089. We did 
not use LMIR as the baseline. 

For MAP calculation we used the top ranks “definitive”, 
“excellent” and “good” as positive and the other ranks as 
negative. 

Figure 7 shows the performances on the test set. We see that 
our methods (RSVM-IR-QP and RSVM-IR-GD) outperform all 
the baselines in all measures.  This indicates again that our 
approach is effective for improving real IR problems. (We were 
not able to apply LMIR to the data because we obtained the data 
as feature vectors, not as documents. We were able to get results 
for BM25 because BM25 score exists as one of the features.) 

In the collection, 8,990 query-documents are labeled as 
“definitive”, 4,403 as “excellent”, 3,735 labeled as “good”, 
20463 labeled as “fair”, 36,375 as “bad”, and 310 labeled as 
“detrimental”. RSVM-IR-Rank makes larger improvements over 
Ranking SVM. 

In contrast, we can also see that RSVM-IR-Query does not 
make much improvement.  In Figure 8, the statistics on the 
dataset suggest the reason. Most of the queries fall into the range 
of 0-99 and thus the second factor in Section 4 is not severe for 
this dataset.  
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Figure 7: Ranking accuracies on web data 

0

100

200

300

400

500

0-99

100-199

200-299

300-399

400-499

500-599

600-699

700-799

800-899

900-999
>=1000

# instance pairs per query

# 
qu

er
ie

s

 
Figure 8: Distribution of queries over numbers of instance pairs 

7. CONCLUSION AND FUTURE WORK 
In the paper, we have proposed a new method for document 
retrieval on the basis of learning to rank.  

There are two important factors that must be taken into 
consideration when applying learning to rank to document 
retrieval. One is to intensify training for top-ranked documents, 
and the other is to avoid training a model biased toward queries 
with many relevant documents. Existing learning to rank 
methods for document retrieval, including Ranking SVM, does 



not consider the two factors. We propose using a new loss 
function to deal with ranking problems. The new loss function 
naturally incorporates the two factors into the Hinge Loss 
function used in Ranking SVM, with two types of additional 
parameters. We employ gradient descent and quadratic 
programming to optimize the loss function. Experimental results 
indicate that our methods significantly outperform Ranking SVM 
and other existing methods in document retrieval.  

 We hope to explore future work in several areas, such as 
conducting theoretical analysis on the proposed method, applying 
the ideas to other loss functions, and developing loss functions 
more suitable for document retrieval.  
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