
Introduction Generating (pseudo-)random numbers Ordinary Monte Carlo Markov chains MCMC Conclusion

Introduction to simulation and Monte Carlo
methods

Eric Gaussier

University Grenoble Alps
UFR-IM2AG

Eric.Gaussier@imag.fr

Eric Gaussier Introduction to simulation and Monte Carlo methods 1



Introduction Generating (pseudo-)random numbers Ordinary Monte Carlo Markov chains MCMC Conclusion

Table of content

1 Introduction

2 Generating (pseudo-)random numbers

3 Ordinary Monte Carlo and limit theorems

4 Markov chains

5 MCMC: Markov Chain Monte Carlo methods

6 Conclusion

Eric Gaussier Introduction to simulation and Monte Carlo methods 2



Introduction Generating (pseudo-)random numbers Ordinary Monte Carlo Markov chains MCMC Conclusion

Illustrative example

Many practical applications requires the evaluation of the
probability P(a < X ≤ b) (waiting time, survival time, ....)

Let F denote the cumulative distribution (CDF ) function of X :
F (x) = P(X ≤ x)

Then: P(a < X ≤ b) = F (b)− F (a)

However, the function F is not always known in closed-form,
even though the density function f is (e.g., the normal
distribution)
The density function f of X is defined, when it exists, as:
F (x) =

∫ x
−∞ f (t)dt

When f exists: P(a < X ≤ b) =
∫ b

a f (t)dt
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Illustrative example (cont’d)

Let us assume that X ∼ N(0,1). In other words:

f (x) =
1

σ
√

2π
exp(− (x − µ)2

2σ2 ) (µ = 0, σ = 1)

F is not known and we cannot compute exactly the above
integrals

However, let us assume that we know how to generate points
from f . What can we do?
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Illustrative example (cont’d)

Example code in R

*******
set.seed12 # seed for random generation
m = 50000 # num. of observations sampled
a = ?; b = ?
z = rnorm(m) # m random obs. from std normal
mean(z > a & z ≤ b) # prop. of obs. in (a,b]

*******
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Structure of the course

Generating random numbers

Ordinary Monte Carlo and limit theorems

Markov chains

MCMC: Monte Carlo Markov Chains
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Linear congruential generator

A linear congruential generator produces integers ri iteratively
acc. to:

ri+1 = ari + b(mod d)

for integers a > 0, b ≤ 0 and d > 0. a is called the multiplier, b
the increment and d the modulus of the generator.

The generation process is started with a positive seed,
s = r1 < d , often taken from a computer clock

If b = 0, the generator is called multiplicative

Linear congruential generators can shuffle integers from
0, 1, 2, · · · , d − 1 in ways that look random
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Linear congruential generator (cont’d)

*******
d=53; a=20; b=0; s=21 # modulus, mult., incr.
m = 60 # length of run
r[1] = s # set seed
for (i in 1:(m-1))

r[i+1] = (a * r[i] + b) %% d # gen. random int.
*******

→ 21 49 26 43 12 28 30 17 ...
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Linear congruential generator (cont’d)

The above generator runs through all 52 numbers before it
repeats; its period is 52; it has full period

With a = 23→ 21 36 2 47 21 · · ·

Fit into the interval (0,1): ui = (ri + 0.5)/d

Properties of good generators:
1 Large modulus and full (or at least large) period
2 Uniform distribution (histogram of values consistent with

UNIF(0,1))
3 Independent structure (pairwise independence – plot of the pairs

(ui , ui+1) should fill the unit square
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Transformations of uniform random
variables

Let us assume that we have a "good" generator for UNIF(0,1).
UNIF(0,1) is such that:

P(0 < X ≤ a) = a, a ≤ 1; F (x) = x , x ∈ [0,1]

Theorem: Suppose X is a continuous random variable with
CDF FX . Then the random varaibles Y = 1− FX (X ) and
Z = FX (X ) are distributed as UNIF(0,1), also noted U[0,1]
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Transformations of uniform random
variables (cont’d)

Proof:

FZ (z) = P(Z ≤ z) = P(FX (X ) ≤ z)

= P(X ≤ F−1
X (z)) = FX (F−1

X (z))

= z

Remark: F−1 is called the quantile transformation
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Transformations of uniform random
variables (cont’d)

Quantile transformation When the quantile function F−1 has
a formula, to simulate a value of X ∼ F :

1 Simulate a value of U ∼ U[0,1]

2 Use X = F−1(U)
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Transformations of uniform random
variables (cont’d)

Accept-reject Suppose X has density f , from which one can
not directly simulate, and F−1 has no known formula. Let us
further assume that we can construct another density g(x) from
which it is easy to simulate and such that f (x)

g(x) is uniformly
bounded. Then, we can simulate X as follows:

1 Find a density function g and constant c: f (x)
g(x) ≤ c, ∀x

2 Generate U ∼ U[0,1]

3 Generate X ∼ G

4 Retain X if U ≤ f (X)
cg(X)

5 Repeat till required number of samples
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Transformations of uniform random
variables (cont’d)

Accept-reject Why does it work?

Theorem: Let X ∼ g and U ∼ U[0,1]. Then, the conditional
density of X given that U ≤ f (X)

cg(X) is f
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Simulating from common distributions

Bernoulli To generate X ∼ Ber(p), generate U ∼ U[0,1] and
set X = IU>1−p

Binomial To generate X ∼ Bin(n,p), generate
X1, ...,Xn ∼ Ber(p) and set X =

∑n
i=1 Xi

Standard exponential To generate X ∼ Exp(1) (exp(−x)),
generate U ∼ U[0,1] and set X = − log(U)

Standard normal To generate X ∼ N(0,1), use the

accept-reject method with g(x) = 1
2 exp(−|x |) and c =

√
2e
π
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Summary (part 1)

1 Generation of random integers with linear congruential
generators

2 From random integers to U[0,1]

3 From U[0,1] to common distributions via quantile transformation
and accept-reject
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Ordinary Monte Carlo
Illustration X ∼ N(0,1); P(0 < X ≤ 1)?
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Ordinary Monte Carlo (cont’d)

First solution (integration)

*******
set.seed12 # seed for random generation
m = 50000 # num. of observations sampled
a = 0; b = 1
w = (b - a)/m
u = a + (b - a) * runif(m) # vector of m random points
h = dnorm(u) # hts of density above u
sum(w*h) # approx. prob.

*******
→ 0.3413
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Ordinary Monte Carlo (cont’d)

Second solution (acceptance-rejection method)

*******
set.seed12 # seed for random generation
m = 50000 # num. of observations sampled
u = runif(m, 0, 1)
h = runif(m, 0, 0.4) height of "upper" rectangle
frac.acc = mean(h < dnorm(u)
0.4 * frac.acc

*******
→ 0.3410
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Ordinary Monte Carlo (cont’d)

Why does the above approach work?
SLLN: Strong Law of Large Numbers

Theorem: Suppose X1, X2, ..., Xn are i.i.d random variables
with a finite mean µ. Then:

P( lim
n→∞

1
n

n∑
i=1

Xi = µ) = 1 (X̄ =
1
n

n∑
i=1

Xi)

(and 1
n
∑n

i=1 φ(Xi) converges almost surely to E [φ(X )])
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Ordinary Monte Carlo (cont’d)

The central limit theorem is used to compute confidence
intervals for the approximate values obtained with Monte Carlo.

Theorem: Suppose X1, X2, ..., Xn are i.i.d random variables
with finite mean µ and finite variance σ2. Then, for large n:

√
n(X̄n − µ) ∼ N(0,1)
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Summary (part 2)

1 Ordinary Monte Carlo can be used to compute many (complex)
integrals, provided the function is known

Expectation and prob. on intervals are special cases (integrals)
Different methods (incl. sampling from the underlying distribution
for prob. on intervals)

2 SLLN guarantees the convergence while CLT provides
confidence intervals

3 What to do when the density function is known up to a constant
(f (x) = h(x)

c )?
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Definitions and notations
Definition 1 A sequence of random variables X0, ...,Xn is said
to be a (finite state) Markov chain for some state space S if for
any xn+1, xn, ..., x0 ∈ S:

P(Xn+1 = xn+1|X0 = x0, ...,Xn = xn) = P(Xn+1 = xn+1|Xn = xn)

X0 is called the initial state and its distribution the initial
distribution

Definition 2 A Markov chain is called homogeneous or
stationary if P(Xn+1 = y |Xn = x) is independent of n for any x ,
y

Definition 3 Let {Xn} be a stationary Markov chain. The
probabilities pij = P(Xn+1 = j |Xn = i) are called the one-step
transition probabilities. The associated matrix P is called the
transition probability matrix
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Definitions and notations (cont’d)

Definition 4 Let {Xn} be a stationary Markov chain. The
probabilities p(n)

ij = P(Xn+m = j |Xm = i) are called the n-step
transition probabilities. The associated matrix P(n) is called the
transition probability matrix

Remark: P is a stochastic matrix

Theorem (Chapman-Kolgomorov equation) Let {Xn} be a
stationary Markov chain and n,m ≥ 1. Then:

pm+n
ij = P(Xm+n = j |X0 = i) =

∑
k∈S

pm
ik pn

kj
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Example

Two urns: urn 1 contain balls A and B; urn 2 contains balls C
and D. In each successive trial , randomly chose a ball from urn
1 and urn 2 and switch them
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Regularity (ergodicity)

Definition 5 Let {Xn} be a stationary Markov chain with
transition probability matrix P. It is called regular if there exists
n0 > 0 such that p(n0)

ij > 0 ∀i , j ∈ S

Theorem (fundamental theorem for finite Markov chains)
Let {Xn} be a regular, stationary Markov chain on a state space
S of t elements. Then, there exists πj , j = 1,2, ..., t such that:

(a) For any initial state i ,
P(Xn = j |X0 = i)→ πj , j = 1,2, ..., t

(b) The row vector π = (π1, π2, ..., πt ) is the unique
solution of the equations πP = π, π1′ = 1

(c) Any row of Pr converges towards π when r →∞

Remark: π is called the long-run or stationary distribution
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Summary (part 3)

1 Stationary, regular Markov chains admit a stationary
(steady-stable) distribution

2 This distribution can be obtained in different ways (as in the
PageRank computation)

3 Power method: let the chain run for a sufficiently long time!
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MCMC overview

Problem Posterior probability estimation in which denominator
is intractable and prior distribution known up to a constant:

P(θ|x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
f (x |θ)

prior︷︸︸︷
π(θ)∫

Θ
f (x |θ)π(θ)dθ︸ ︷︷ ︸

m(x)

m(x) is a normalizing constant, often unknown; it is also an
expectation!
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MCMC overview (ont’d)

MCMC steps:
1 Identify the target distribution π and the state space S (support

of π) from which one wants to simulate

2 Construct Markov chain {Xn} with stationary distribution π

3 Run the chain for a sufficiently long time and use the values
XB+1, ...,Xn as samples for B large

4 Approximate Eπ[φ(X )] by 1
(n−B)

∑n
k=B+1 φ(Xk )

Step 2?
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Reversible Markov chains

Definition 5 Let {Xn} be a stationary Markov chain with
transition probability matrix P and state space S. The chain is
said to be reversible if there exists a nonnegative function π(x)
on S such that: pijπ(i) = pjiπ(j)

Remark: if π is a steady-state, then
P(Xn = j |Xn+1 = i) = P(Xn+1 = j |Xn = i)

Theorem Let {Xn} be a regular, reversible, stationary Markov
chain on a state space S. Then π (reversibility) is a unique
stationary distribution of the chain and
1
n
∑n

k=1 φ(Xk )→ Eπ[φ(X )]
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Metropolis-Hastings algorithm

Metropolis

pij = αijγij , i , j ∈ S, j 6= i

pii = 1−
∑
j 6=i

pij (1)

Metropolis-Hastings (special case)

αij = c; γij = min{1, π(j)
π(i)
}

Is the reversibility condition satisfied?
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Metropolis-Hastings algorithm (cont’d)

Theorem The general Metropolis algorithm has π as its
stationary distribution

Remark: 0,1, ...,B is the burn-in period before the chain
stabilizes (B is either set sufficiently large or is obtained
through stabilization criteria)
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Example

Y ∼ Geo(p) (P(Y = x) = p(1− p)x−1) and one wants to
simulate from the conditional distribution of Y given that Y ≤ n,
where n > 1 is a specified integer

Then:

π(x) =
p(1− p)x−1

1− (1− p)n I1≤x≤n

pij?
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The Gibbs sampler

When state space is large (of dimension m), previous methods
may be difficult to apply. Gibbs sampling iterates the process:

From state x = (x1, ..., xm) go to state y = (y1, ..., ym) via
(y1, x2, ..., xm), (y1, y2, x3, ..., xm), ...

The transition: (x1, ..., xm) → (y1, x2, ..., xm) is made by
simulating from the distribution π(x1|x2, ..., xm). Such
conditional distributions are called full conditionals
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The Gibbs sampler (cont’d)

The Gibbs sampler makes its transition by changing one
coordinate at a time

Random scan Gibbs sampler

Systematic Gibbs sampler

Full conditional: π(xi |x−i); transition from x to
y = (x1, ..., xi−1, yi , xi+1, ..., xm) acc. to π(xi |xi)
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The Gibbs sampler (cont’d)

In the random scan, the transition probability matrix is:
P = 1

m (P1 + ...+ Pm) where Pi has entries given by:

pi,xy = π(yi |x−i)Iyj =xj ∀ j 6=i

Each Pi is reversible (π(x)pi,xy = π(y)pi,yx ), and so is P; same
holds for regularity

Reversibility may not be ensured for systematic scan; it is
however ensured for the order randomized systematic scan
Gibbs sampler (choose order at random then systematic scan)
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The Gibbs sampler (cont’d)

Theorem Suppose π(x) > 0 for all x ∈ S. Then the random
scan and the order randomized systematic scan Gibbs
samplers both have π has unique stationary distribution

Remarks
1 The systematic Gibbs sampler often used in practice (speed

issues)

2 Burn-in period to consider prior to averaging

Example Gibbs sampling from Dirichlet distributions
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Summary (part 4)

1 Reversible Markov chains to simulate in situations where
previous methods fail

2 Metropolis algorithm (Metropolis-Hastings version)

3 Gibbs sampling (with random and systematic scans)
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Conclusion

Generic methods that can be applied in many different cases

Sometimes methods are combined (Gibbs sampling with
Metropolis-Hastings, e.g. for a particular full conditional)

Algorithms relatively easy; the definition of the chain slightly
more difficult for MCMC

Widespread use, but not necessarily the fastest methods

Confidence intervals (reliability measures)
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Some references used to prepare the course

E. Suess, B. Trumbo. Introduction to Probability Simulation and
Gibbs Sampling with R, Springer, 2010

A. DasGupta. Probability for Statistics and Machine Learning,
Springer, 2011
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