
Advanced algorithms for ML/DM (2nd part)

– Learning to rank –

Eric Gaussier

Univ. Grenoble Alpes

UFR-IM2AG, LIG, MIAI@Grenoble Alpes

eric.gaussier@imag.fr

Eric Gaussier L2R 1



Table of content

Introduction - a crash course on supervised learning concepts

Learning to rank

Evaluation - the case of IR

Which training data for IR?

Conclusion

Eric Gaussier L2R 2



Supervised machine learning

G
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y
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I x ∈ X ⊆ Rp, x = (x1, x2, · · · , xp)
T , is an input example

I y ∈ Y = R or {1, · · · ,K} is the desired output (produced
by unobserved system S)

I From input-output examples (training set), learner A learns
a function f ∈ F that aims at replicating system S
(y ′ = f (x) should be as close as possible to y )
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Notations and fundamental concepts

1. Training set: D = ((x (1), y (1)), · · · , (x (n), y (n)))

2. Family of functions: F ⊆ {X → Y} (f ∈ F)

3. Loss function:
L : YxY → R, s.t. L(y , y ′) ≥ 0 for y 6= y ′

4. Functional risk (true risk) for f :

R(f ) = EP(x ,y)L(y , f (x)) (=
∑

x

∑
y

P(x , y)L(y , f (x))

5. Empirical risk (training error) for f :

Remp(f ;D) = 1
n

n∑
i=1

L(y (i), f (x (i)))
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Notations and fundamental concepts (cont’d)

What we would like

argminf∈FR(f )

What we can have

argminf∈FRemp(f ;D) = argminf∈F
1
n

n∑
i=1

L(y (i), f (x (i)))
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Justifying the empirical risk minimization principle

When the number of examples increases (→ +∞), the
empirical risk converges to the true risk

N: # of examples

Min(true risk)

Remp
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In practice: Finite samples and the bias-variance
tradeoff

Overtraining problem
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Regularizing the empirical risk

Aiming at a tradeoff between minimizing the empirical risk and
avoiding too complex models

argminf∈F

Remp(f ;D)︷ ︸︸ ︷
n∑

i=1

L(y (i), f (x (i)))+λCF (f )

I λ is an hyperparameter that controls this tradeoff
I CF (f ) measures the complexity of f ∈ F
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Regularizing the empirical risk – illustration

I Regression problem (y ∈ R)
I F : w0 + w1x1 + · · ·wpxp (family of linear functions,

parametrized by w ∈ Rp+1)
I L2 loss
I Complexity measures by ||w ||22 =

∑p
l=0 w2

l

Then:

argminf∈F

n∑
i=1

L(y (i), f (x (i))) + λCF (f )

⇔

argminw∈Rp+1

n∑
i=1

(y (i) − w0 + w1x1 + · · ·wpxp)
2 + λ

p∑
l=0

w2
l
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A few words on F
The estimation-approximation tradeoff

Family of functions (ℱ)

f*
f0

f

Approximation errorEstimation error
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Introduction

1. In many applications (as IR), the main goal is to rank
objects

2. A simple, however not optimal, way to to do so is to learn a
score for an object

3. Learning a regression function
I Neural nets, SVR, gradient boosted trees, ...
I Typical losses mean square error (MSE or L2 loss), mean

absolute error (MAE or L1 loss)
4. Learning a classification function

I Many objects have binary class labels, with some ordering
(class 1, C1, is preferred over class 0)

I Typical loss cross-entropy loss (CE)

MSE: (ŷi − yi)
2; CE: −yi log(pi)− (1− yi) log(1− pi), pi = P(xi ∈ C1)
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Illustration

The goal is to find the ranking (o′2,o
′
3,o
′
1) from some training

data in which objects are assigned scores or ordered class
labels

1. Learn regressor on training data; compute scores for o′1, o′2
and o′3; rank them according to their score

2. Do the same with the classifier, using the score of class 1
In IR, binary relevance judgements (training data) in the form:
q1 : (d (1),1); (d (2),0); · · ·
q2 : · · ·
· · ·
What is an example (an x ∈ Rp)? A document? A query?
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Modeling IR as a binary classification problem

→ A (query,doc) pair: x = (q,d) ∈ Rp

General coordinates (p is a few tens)

x1 =
∑

w∈q
⋂

d log(tf d
w )

x2 =
∑

w∈q
⋂

d log(idfw )
...
x17 = q · d
x18 = BM25(q,d)
...
x30 = PageRank(d)
...
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Modeling IR as a binary classification problem (cont’d)

Each example x(= (q,d)) containing a document relevant
(resp. non relevant) to the query is in C1 (resp. C0)

Remarks
1. One uses the value of the decision function to obtain an

order on documents
2. Drawbacks (both classificaiton and regression)

I Method that assigns a score to a document independently
of other documents (→ pointwise method)

I Loss function not built from evaluation function (true
objective)
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Preference pairs and ranking

1. In many cases, one does not have a complete ranking of
objects to learn from, but rather a partial ordering which
can take the form of preference pairs

2. For instance, relevance is not an absolute notion and it is
easier to compare the relative relevance of say two
documents

3. In such cases, one is looking for a function f that preserves
partial order between objects:

x (i) � x (j) ⇐⇒ f (x (i)) > f (x (j))

Remark: Preference pairs can be obtained from (binary)
relevance judgements as well as from complete or partial
orderings
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How to learn from such pairs?

Idea: Transform a preference pair information into a
classification information by forming the difference between
objects in the pair

x (i,j) = (x (i) − x (j))

y (i,j) =

{
+1 if x (i) �(j)

0 if x (j) � x (i)

One can then use any classifier as before (→ pairwise method)

Remark: In the case of IR, x (i) and x (j) are (doc,query) pairs
with the same query (x (i) � x (j) means d (i) is more relevant
than d (j) for the query)
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In practice

How to apply a classifier learnt on preference pairs?

I For each object to be ranked, form a pair with the null
object (null vector)

I The score obtained for each such pair is an indication of
the score of the object

I Objects are thus ranked acc. to this score (optimal in some
case)

Remarks:
I No difference between errors made at the top or at the

middle of the list (→ adaptation of the loss)
I Still not aligned with evaluation functions for ranking
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Extensions/General remarks

1. Listwise approach
I Directly treat lists as examples
I Possibility to use (approximations of) ranking evaluation

functions as objectives/losses

2. Methods that require training data
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Relevance judgements

I Binary judgements: the doc is relevant (1) or not relevant
(0) to the query

I Multi-valued judgements:
Perfect > Excellent > Good > Correct > Bad

I Preference pairs: doc dA more relevant than doc dB to the
query

Several (large) collections with many (> 30) queries and
associated (binary) relevance judgements: TREC collections
(trec.nist.gov), CLEF (www.clef-campaign.org), FIRE
(fire.irsi.res.in)
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Common evaluation measures

I MAP (Mean Average Precision)
I MRR (Mean Reciprocal Rank)

I For a given query q, let rq be the rank of the first relevant
document retrieved

I MRR: mean of 1
rq

over all queries

I WTA (Winner Takes All)
I If the first retrieved doc is relevant, sq = 1; sq = 0 otherwise
I WTA: mean of sq over all queries

I NDCG (Normalized Discounted Cumulative Gain)
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NDCG

• NDCG at position k :

N(k) =

normalization︷︸︸︷
Zk

k∑
j=1︸︷︷︸

cumul

gain︷ ︸︸ ︷
(2r(j) − 1) / log2(j + 1)︸ ︷︷ ︸

position discount

• Averaged over all queries
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G : Gain

Relevance Value (gain)
Perfect (5) 31 = 25 − 1
Excellent (4) 15 = 24 − 1
Good (3) 7 = 23 − 1
Correct (2) 3 = 22 − 1
Bad (0) 0 = 21 − 1
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DCG : Discounted CG

Discounting factor: ln(2)
ln(j+1)

Doc. (rank) Rel.. Gain CG DCG
1 Perf. (5) 31 31 31
2 Corr. (2) 3 34 32.9 = 31 + 3× 0.63
3 Exc. (4) 15 49 40,4
4 Exc. (4) 15 64 46,9
· · · · · · · · · · · · · · ·
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Ideal ranking: max DCG

Document (rank) Relevance Gain max DCG
1 Perfect (5) 31 31
2 Excellent (4) 15 40.5
3 Excellent (4) 15 48
4 Correct (2) 3 49.3
· · · · · · · · · · · ·
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Normalized DCG

Doc. (rank) Rel. Gain DCG max DCG NDCG
1 Perfect (5) 31 31 31 1
2 Correct (2) 3 32.9 40.5 0.81
3 Excellent (4) 15 40.4 48 0.84
4 Excellent (4) 15 46.9 49.3 0.95
· · · · · · · · · · · · · · ·

Eric Gaussier L2R 27



Remarks on evaluation measures

• Measures for a given position (e.g. list of 10 retrieved
documents)

• NDCG is more general than MAP (multi-valued relevance vs
binary relevance)

• Non continuous (and thus non derivable), but can be
approximated!
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Building training data

• Several annotated collections exist
I TREC (TREC-vidéo)
I CLEF
I NTCIR

• For new collections, as intranets of companies, such
collections do not exist and it may be difficult to build them→
standard models, with little training

•What about the web?
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Training data on the web

• An important source of information; click data from users
I Use clicks to infer preferences between docs (preference

pairs)
I In addition, and if possible, use eye-tracking data

•What can be deduced from clicks?

Joachims et al. Accurately Interpreting Clickthrough Data as
Implicit Feedback, SIGIR 2005
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Exploiting clicks (1)

Clicks can not be used to infer absolute relevance judgements;
they can nevertheless be used to infer relative relevance
judgements. Let (d1,d2,d3, · · · ) be an ordered list of
documents retrieved for a particular query and let C denote the
set of clicked documents. The following strategies can be used
to build relative relevance judgements:

1. If di ∈ C and dj /∈ C, di �relq dj

2. If di is the last clicked doc, ∀j < i , dj /∈ C, di �relq dj

3. ∀i ≥ 2,di ∈ C,di−1 /∈ C,di �relq di−1

4. ∀i ,di ∈ C,di+1 /∈ C,di �relq di+1
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Exploiting clicks (2)

I The above strategies yield a partial order between docs
I Leading to a very large training set on which one can

deploy learning to rank methods
I IR on the web has been characterized by a "data rush":

I Index as many pages as possible
I Get as many click data as possible
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Letor

http://research.microsoft.com/en-us/um/beijing/projects/letor/

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. LETOR: A
Benchmark Collection for Research on Learning to Rank for
Information Retrieval, Information Retrieval Journal, 2010
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Conclusion

I Approaches aiming at exploiting all the available
information (60 features for the gov collection for example -
including scores of standard IR models)

I Approaches aiming at "ranking" documents (pairwise,
listwise)

I Many proposals (neural nets, boosting and ensemble
methods, ...); no clear difference on all collections

I State-of-the-art methods when many features available
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