Advanced algorithms for ML/DM (2nd part) - Learning to rank -

Eric Gaussier

Univ. Grenoble Alpes

UFR-IM²AG, LIG, MIAI@Grenoble Alpes

eric.gaussier@imag.fr

Introduction - a crash course on supervised learning concepts

Learning to rank

Evaluation - the case of IR

Which training data for IR?

Conclusion

Supervised machine learning

•
$$x \in \mathcal{X} \subseteq \mathbb{R}^p, x = (x_1, x_2, \cdots, x_p)^T$$
, is an input example

- y ∈ Y = ℝ or {1, · · · , K} is the desired output (produced by unobserved system S)
- From input-output examples (training set), learner A learns a function f ∈ F that aims at replicating system S (y' = f(x) should be as close as possible to y)

- 1. Training set: $\mathcal{D} = ((x^{(1)}, y^{(1)}), \cdots, (x^{(n)}, y^{(n)}))$
- 2. *Family of functions:* $\mathcal{F} \subseteq {\mathcal{X} \to \mathcal{Y}}$ ($f \in \mathcal{F}$)
- 3. Loss function:

 $L: \mathcal{Y} X \mathcal{Y} \to \mathbb{R}, \text{s.t. } L(y, y') \ge 0 \text{ for } y \neq y'$

- 4. Functional risk (true risk) for f: $R(f) = E_{P(x,y)}L(y, f(x)) \ (= \sum_{x} \sum_{y} P(x, y)L(y, f(x)))$
- 5. Empirical risk (training error) for f: $\operatorname{Remp}(f; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))$

- 1. Training set: $\mathcal{D} = ((x^{(1)}, y^{(1)}), \cdots, (x^{(n)}, y^{(n)}))$
- **2**. *Family of functions:* $\mathcal{F} \subseteq {\mathcal{X} \to \mathcal{Y}}$ ($f \in \mathcal{F}$)
- 3. Loss function: $L: \mathcal{Y} x \mathcal{Y} \to \mathbb{R}, \text{s.t. } L(y, y') \ge 0 \text{ for } y \neq y'$
- 4. Functional risk (true risk) for f: $R(f) = E_{P(x,y)}L(y, f(x)) \ (= \sum_{x} \sum_{y} P(x, y)L(y, f(x)))$
- 5. Empirical risk (training error) for f: $\operatorname{Remp}(f; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))$

- 1. Training set: $\mathcal{D} = ((x^{(1)}, y^{(1)}), \cdots, (x^{(n)}, y^{(n)}))$
- **2**. *Family of functions:* $\mathcal{F} \subseteq {\mathcal{X} \to \mathcal{Y}}$ ($f \in \mathcal{F}$)
- 3. Loss function:

$$L: \mathcal{Y} x \mathcal{Y} \to \mathbb{R}, \text{s.t. } L(y, y') \ge 0 \text{ for } y \neq y'$$

4. Functional risk (true risk) for f:

$$R(f) = E_{P(x,y)}L(y, f(x)) \ (= \sum_{x} \sum_{y} P(x, y)L(y, f(x)))$$

5. Empirical risk (training error) for f: $\operatorname{Remp}(f; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))$

- 1. Training set: $\mathcal{D} = ((x^{(1)}, y^{(1)}), \cdots, (x^{(n)}, y^{(n)}))$
- 2. Family of functions: $\mathcal{F} \subseteq {\mathcal{X} \to \mathcal{Y}}$ ($f \in \mathcal{F}$)
- 3. Loss function:

$$L: \mathcal{Y} x \mathcal{Y} \to \mathbb{R}, \text{s.t. } L(y, y') \ge 0 \text{ for } y \neq y'$$

4. Functional risk (true risk) for f:

$$R(f) = E_{P(x,y)}L(y, f(x)) \ (= \sum_{x} \sum_{y} P(x, y)L(y, f(x)))$$

5. Empirical risk (training error) for f: Remp(f; \mathcal{D}) = $\frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))$

- 1. Training set: $\mathcal{D} = ((x^{(1)}, y^{(1)}), \cdots, (x^{(n)}, y^{(n)}))$
- 2. Family of functions: $\mathcal{F} \subseteq {\mathcal{X} \to \mathcal{Y}}$ ($f \in \mathcal{F}$)
- 3. Loss function:

$$L: \mathcal{Y} x \mathcal{Y} \to \mathbb{R}, \text{s.t. } L(y, y') \ge 0 \text{ for } y \neq y'$$

4. Functional risk (true risk) for f:

$$R(f) = E_{P(x,y)}L(y, f(x)) \ (= \sum_{x} \sum_{y} P(x, y)L(y, f(x)))$$

5. Empirical risk (training error) for f: $\operatorname{Remp}(f; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))$

Notations and fundamental concepts (cont'd)

What we would like

 $\operatorname{argmin}_{f\in\mathcal{F}}R(f)$

What we can have

$$\operatorname{argmin}_{f \in \mathcal{F}} \operatorname{Remp}(f; \mathcal{D}) = \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))$$

5

Notations and fundamental concepts (cont'd)

What we would like

 $\operatorname{argmin}_{f\in\mathcal{F}}R(f)$

What we can have

$$\operatorname{argmin}_{f \in \mathcal{F}} \operatorname{Remp}(f; \mathcal{D}) = \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))$$

Justifying the empirical risk minimization principle

When the number of examples increases ($\rightarrow +\infty),$ the empirical risk converges to the true risk

N: # of examples

In practice: Finite samples and the bias-variance tradeoff

Overtraining problem

Aiming at a tradeoff between minimizing the empirical risk and avoiding too complex models

$$\operatorname{argmin}_{f \in \mathcal{F}} \underbrace{\sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))}_{i=1} + \lambda C_{\mathcal{F}}(f)$$

- λ is an hyperparameter that controls this tradeoff
- $C_{\mathcal{F}}(f)$ measures the complexity of $f \in \mathcal{F}$

Regularizing the empirical risk - illustration

- ▶ Regression problem ($y \in \mathbb{R}$)
- ► \mathcal{F} : $w_0 + w_1 x_1 + \cdots + w_p x_p$ (family of linear functions, parametrized by $w \in \mathbb{R}^{p+1}$)
- L2 loss
- Complexity measures by $||w||_2^2 = \sum_{l=0}^p w_l^2$

Then:

$$\operatorname{argmin}_{f \in \mathcal{F}} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)})) + \lambda C_{\mathcal{F}}(f)$$

 \Leftrightarrow

$$\operatorname{argmin}_{w \in \mathbb{R}^{p+1}} \sum_{i=1}^{n} (y^{(i)} - w_0 + w_1 x_1 + \cdots + w_p x_p)^2 + \lambda \sum_{l=0}^{p} w_l^2$$

9

A few words on ${\mathcal F}$

The estimation-approximation tradeoff

Introduction - a crash course on supervised learning concepts

Learning to rank

Evaluation - the case of IR

Which training data for IR?

Conclusion

Introduction

- 1. In many applications (as IR), the main goal is to **rank** objects
- 2. A simple, however not optimal, way to to do so is to learn a score for an object
- 3. Learning a regression function
 - Neural nets, SVR, gradient boosted trees, ...
 - Typical losses mean square error (MSE or L₂ loss), mean absolute error (MAE or L₁ loss)
- 4. Learning a classification function
 - Many objects have binary class labels, with some ordering (class 1, C₁, is preferred over class 0)
 - Typical loss cross-entropy loss (CE)

MSE: $(\hat{y}_i - y_i)^2$; CE: $-y_i \log(p_i) - (1 - y_i) \log(1 - p_i)$, $p_i = P(x_i \in C_1)$

The goal is to find the ranking (o'_2, o'_3, o'_1) from some training data in which objects are assigned scores or ordered class labels

- 1. Learn regressor on training data; compute scores for o'_1 , o'_2 and o'_3 ; rank them according to their score
- 2. Do the same with the classifier, using the score of class 1 In IR, binary relevance judgements (training data) in the form: $q_1 : (d^{(1)}, 1); (d^{(2)}, 0); \cdots$ $q_2 : \cdots$

What is an example (an $x \in \mathbb{R}^{p}$)? A document? A query?

. . .

Modeling IR as a binary classification problem

o A (query,doc) pair: $x = (q,d) \in \mathbb{R}^p$

General coordinates (p is a few tens)

$$\begin{aligned} x_1 &= \sum_{w \in q \cap d} \log(tf_w^d) \\ x_2 &= \sum_{w \in q \cap d} \log(\mathsf{idf}_w) \end{aligned}$$

$$x_{17} = q \cdot d$$

$$x_{18} = BM25(q, d)$$

...

$$x_{30} = PageRank(d)$$

. . .

Modeling IR as a binary classification problem (cont'd)

Each example x(=(q, d)) containing a document relevant (resp. non relevant) to the query is in C_1 (resp. C_0)

Remarks

- 1. One uses the value of the decision function to obtain an order on documents
- 2. Drawbacks (both classification and regression)
 - Method that assigns a score to a document independently of other documents (→ *pointwise method*)
 - Loss function not built from evaluation function (true objective)

Preference pairs and ranking

- In many cases, one does not have a complete ranking of objects to learn from, but rather a partial ordering which can take the form of preference pairs
- 2. For instance, relevance is not an absolute notion and it is easier to compare the relative relevance of say two documents
- 3. In such cases, one is looking for a function *f* that preserves partial order between objects:

$$x^{(i)} \succ x^{(j)} \Longleftrightarrow f(x^{(i)}) > f(x^{(j)})$$

Remark: Preference pairs can be obtained from (binary) relevance judgements as well as from complete or partial orderings

How to learn from such pairs?

Idea: Transform a preference pair information into a classification information by forming the difference between objects in the pair

$$\begin{aligned} x^{(i,j)} &= (x^{(i)} - x^{(j)}) \\ y^{(i,j)} &= \begin{cases} +1 & \text{if } x^{(i)} \succ^{(j)} \\ 0 & \text{if } x^{(j)} \succ x^{(i)} \end{cases} \end{aligned}$$

One can then use any classifier as before (\rightarrow *pairwise method*)

Remark: In the case of IR, $x^{(i)}$ and $x^{(j)}$ are (doc,query) pairs with the same query ($x^{(i)} \succ x^{(j)}$ means $d^{(i)}$ is more relevant than $d^{(j)}$ for the query)

In practice

How to apply a classifier learnt on preference pairs?

- For each object to be ranked, form a pair with the null object (null vector)
- The score obtained for each such pair is an indication of the score of the object
- Objects are thus ranked acc. to this score (optimal in some case)

Remarks:

- No difference between errors made at the top or at the middle of the list (→ adaptation of the loss)
- Still not aligned with evaluation functions for ranking

In practice

How to apply a classifier learnt on preference pairs?

- For each object to be ranked, form a pair with the null object (null vector)
- The score obtained for each such pair is an indication of the score of the object
- Objects are thus ranked acc. to this score (optimal in some case)

Remarks:

- No difference between errors made at the top or at the middle of the list (→ adaptation of the loss)
- Still not aligned with evaluation functions for ranking

In practice

How to apply a classifier learnt on preference pairs?

- For each object to be ranked, form a pair with the null object (null vector)
- The score obtained for each such pair is an indication of the score of the object
- Objects are thus ranked acc. to this score (optimal in some case)

Remarks:

- No difference between errors made at the top or at the middle of the list (→ adaptation of the loss)
- Still not aligned with evaluation functions for ranking

Extensions/General remarks

- 1. Listwise approach
 - Directly treat lists as examples
 - Possibility to use (approximations of) ranking evaluation functions as objectives/losses
- 2. Methods that require training data

Introduction - a crash course on supervised learning concepts

Learning to rank

Evaluation - the case of IR

Which training data for IR?

Conclusion

Relevance judgements

- Binary judgements: the doc is relevant (1) or not relevant
 (0) to the query
- Multi-valued judgements: Perfect > Excellent > Good > Correct > Bad
- Preference pairs: doc d_A more relevant than doc d_B to the query

Several (large) collections with many (> 30) queries and associated (binary) relevance judgements: TREC collections (trec.nist.gov), CLEF (www.clef-campaign.org), FIRE (fire.irsi.res.in)

Common evaluation measures

- MAP (Mean Average Precision)
- MRR (Mean Reciprocal Rank)
 - For a given query q, let r_q be the rank of the first relevant document retrieved
 - MRR: mean of $\frac{1}{r_a}$ over all queries
- WTA (Winner Takes All)
 - ▶ If the first retrieved doc is relevant, $s_q = 1$; $s_q = 0$ otherwise
 - WTA: mean of s_q over all queries
- NDCG (Normalized Discounted Cumulative Gain)

• NDCG at position k:

Averaged over all queries

G : Gain

_

Relevance	Value (gain)
Perfect (5)	$31 = 2^5 - 1$
Excellent (4)	$15 = 2^4 - 1$
Good (3)	$7 = 2^3 - 1$
Correct (2)	$3 = 2^2 - 1$
Bad (0)	$0 = 2^1 - 1$

DCG : Discounted CG

Discounting factor: $\frac{\ln(2)}{\ln(j+1)}$

Doc. (rank)	Rel	Gain	CG	DCG		
1	Perf. (5)	31	31	31		
2	Corr. (2)	3	34	$32.9 = 31 + 3 \times 0.63$		
3	Exc. (4)	15	49	40,4		
4	Exc. (4)	15	64	46,9		
		•••		•••		

Document (rank)	Relevance	Gain	max DCG	
1	Perfect (5)	31	31	
2	Excellent (4)	15	40.5	
3	Excellent (4)	15	48	
4	Correct (2)	3	49.3	

Normalized DCG

Doc. (rank)	Rel.	Gain	DCG	max DCG	NDCG
1	Perfect (5)	31	31	31	1
2	Correct (2)	3	32.9	40.5	0.81
3	Excellent (4)	15	40.4	48	0.84
4	Excellent (4)	15	46.9	49.3	0.95
•••	•••	•••			

- Measures for a given position (e.g. list of 10 retrieved documents)
- NDCG is more general than MAP (multi-valued relevance vs binary relevance)
- Non continuous (and thus non derivable), but can be approximated!

Introduction - a crash course on supervised learning concepts

Learning to rank

Evaluation - the case of IR

Which training data for IR?

Conclusion

Building training data

- Several annotated collections exist
 - TREC (TREC-vidéo)
 - CLEF
 - NTCIR
- \bullet For new collections, as intranets of companies, such collections do not exist and it may be difficult to build them \to standard models, with little training
- What about the web?

Training data on the web

- An important source of information; click data from users
 - Use clicks to infer preferences between docs (preference pairs)
 - In addition, and if possible, use eye-tracking data
- What can be deduced from clicks?

Joachims et al. Accurately Interpreting Clickthrough Data as Implicit Feedback, SIGIR 2005 Clicks can not be used to infer absolute relevance judgements; they can nevertheless be used to infer relative relevance judgements. Let (d_1, d_2, d_3, \dots) be an ordered list of documents retrieved for a particular query and let *C* denote the set of clicked documents. The following strategies can be used to build relative relevance judgements:

- 1. If $d_i \in C$ and $d_j \notin C$, $d_i \succ_{rel_q} d_j$
- 2. If d_i is the last clicked doc, $\forall j < i, d_j \notin C, d_i \succ_{rel_q} d_j$
- **3**. $\forall i \geq 2, d_i \in C, d_{i-1} \notin C, d_i \succ_{\textit{rel}_q} d_{i-1}$
- 4. $\forall i, d_i \in C, d_{i+1} \notin C, d_i \succ_{rel_q} d_{i+1}$

32

Exploiting clicks (2)

- The above strategies yield a partial order between docs
- Leading to a very large training set on which one can deploy learning to rank methods
- IR on the web has been characterized by a "data rush":
 - Index as many pages as possible
 - Get as many click data as possible

http://research.microsoft.com/en-us/um/beijing/projects/letor/

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. *LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval*, Information Retrieval Journal, 2010 Introduction - a crash course on supervised learning concepts

Learning to rank

Evaluation - the case of IR

Which training data for IR?

Conclusion

Conclusion

- Approaches aiming at exploiting all the available information (60 features for the *gov* collection for example including scores of standard IR models)
- Approaches aiming at "ranking" documents (*pairwise*, *listwise*)
- Many proposals (neural nets, *boosting* and ensemble methods, ...); no clear difference on all collections
- State-of-the-art methods when many features available

- Burges et al. *Learning to Rank with Nonsmooth Cost Functions*, NIPS 2006
- Cao et al. *Adapting Ranking SVM to Document Retrieval*, SIGIR 2006
- Cao et al. *Learning to Rank: From Pairwise to Listwise Approach*, ICML 2007
- Workshop LR4IR, 2007 (Learning to Rank for Information Retrieval).
- Liu Learning to Rank for Information Retrieval, tutoriel, 2008.