Sequence Modeling: Recurrent Neural Networks J

Yagmur Gizem Cinar, Eric Gaussier
AMA, LIG, Univ. Grenoble Alpes

27 October 2017

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 1/54

]
Reference Book

Deep Learning
lan Goodfellow and Yoshua Bengio and Aaron Courville
MIT Press
2016

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 2 /54

N
Table of Contents

© Recurrent Neural Networks

© Bidirectional Recurrent Neural Networks

© Encoder-Decoder Sequence-to-Sequence Architectures
@ Deep Recurrent Networks

© Long-Term Dependencies

@ Leaky Units and Multiple Time Scales

@ Long Short-Term Memory and Other Gated RNNs

© Optimization for Long-Term Dependencies

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 3 /54

Recurrent Neural Networks (RNNs)

@ Specialized for processing a sequence x1), ... x(7)

@ RNNs can scale to longer sequence than networks without sequence-based
specialization

@ Parameter sharing across different parts of a model enables to extend to
different forms and generalize

@ For RNNs sharing parameters across time and generalize to different lenght
of sequences
o Example:

"1 went to Nepal in 2009"
"In 2009, | went to Nepal”

o A feedforward network for a fixed sized sentence can learn rules separately at
each position

@ A RNN share same weights across several time steps

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 4 /54

Recurrent Neural Networks (RNNs)

Parameter sharing with the convolution across 1-D temporal sequence

o Basis for time-delay networks

o Parameter sharing across time but shallow

e Output is a function of neighbouring members
o Using same convolution kernel at each time step

For RNNs output is a function of previous members of output
Output members are produced using the same update rule

Recurrent parameter sharing leads to a deep computational graph

A sequence x(®)
o Time index t € [1,...,7]
o In practice, minibatches of sequences with different length 7
e Time might refer to a position in the sequence

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 5 /54

Unfolding Computational Graphs
A computational graph formalizes the structure of a set of computations including

mapping inputs and parameters to outputs and loss

unfolding a recurrent/recursive computation to computational graph with a
repetitive structure

Classical form of dynamical system:

s(t) = f(s(t’l); 0)

where s(9) is the state of the system

.s<)L——n e >'

Figure 1: Unfolded computational graph of classical dynamical system?.

1| Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 6 / 54

http://www.deeplearningbook.org

Recurrent Neural Networks

Unfolding Computational Graphs

Classical form of dynamical system:

s() — f(s(t’l); 0)

\
B L_ _N S(.“),‘

Figure 2: Unfolded computational graph of classical dynamical system?.
For finite 7 time steps, we can unfold by the same definition 7 — 1 times

For 7 = 3 time steps:

s®) = £(s®;)
= f(f(s(l);H); 0)

2] Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017

7/54

http://www.deeplearningbook.org

Unfolding Computational Graphs

Another dynamical system driven by an external signal x(*)

s = £(s) xt:0)
Any function with recurrence can be considered a recurrent network
Rewriting above equation using variable h, hidden units

h(t) — f(h(f—l)’ x(): 0)

RN
|h<)‘- >.h<)|
f\ /

Figure 3: An RNN with no output®.

f Unfold

where has information about the whole sequence

3] Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 8 /54

http://www.deeplearningbook.org

Recurrent Neural Networks

Unfolding Computational Graphs

//_\\ ,/_\\
| Rl - P pe))
\ / \ /
—_—» ~- f f f f~=7

olNcle

has information about the whole sequence
Circuit diagram (left)

°
@ e.g. biological neural network
°
°

where

Black square indicates a delay of a single time step, from state t to t + 1

Unfolded graph (right) maps a circuit to a computational graph with
repeated parts

Unfolded graph size depends on the sequence length

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 9 /54

Unfolding Computational Graphs

h(t) — f(h(t—l)’x(t); 0)

For a task requiring predicting the future from the past,

e h(Y) becomes a kind of lossy summary

e h(9) is a fixed-length vector mapping from arbitrary length sequence
(X(t)’ X(t_l)’ .. 7)((]-))
Depending on the training criterion, selectively keep some aspects
Ex: statistical language modeling predict next word given previous words
Most challenging recovering input sequence from h(t), e.g. autoencoders

PR
. h()\. >. Bl)I
(el

! Unfnld

Figure 4: An RNN with no output®.

4] Goodfellow, Y Bengio, and A Courville. Deep Learning.

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017

10 / 54

http://www.deeplearningbook.org

Unfolding Computational Graphs

) /

1

Ay
l h()L @ Q h h(!
- f ~-7
! Unfold

@ Unfolded recurrence after t steps with a function g(t)
h() = gO(x(0) x(E=D 1 x?) x(1)
= f(h(=1 x(®);)

o g(®) takes whole past sequence (x(*), x(t=1) ... x() x(1)) and produce
current state

o Unfolded recurrent structure factorize g(*) into repeated f

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017

11/ 54

Unfolding Computational Graphs

-~
OO
f Unfo]d -

@ Unfolding process:

+ Regardless of sequence length model has fixed input size (since specified in
terms of state transitions)

+ Use of same transition function f with the same parameters at every time
step

@ These two factors enables to learn a single shared model

Generalization to sequence lengths not observed in training
Able to train with fewer examples required without than parameter sharing

@ Recurrent graph is succinct

@ Unfolded graph is explicit and illustrates information flow in forward and
backward in time

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 12 / 54

Recurrent Neural Networks

Important design patterns:
@ An output at each time step and recurrent connections between hidden units
@ An output at each time step and recurrent connections only from the output
at one time step to hidden units at the next time step
© Recurrent connections between hidden units and a single output after reading
the entire sequence

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 13 / 54

http://www.deeplearningbook.org

Recurrent Neural Networks

/77N

»l . =
w \ W

- ~N_~
U U U{

/7N
[PNES|
\ ® /

~N_~

Figure 6: Time-unfolded RNN with a single output at the end®.

6] Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 14 / 54

http://www.deeplearningbook.org

Recurrent Neural Networks

@ RNNs below universal for any function computable by a Turing machine
@ The output after number of time steps asymptotically linear

e in the number of time steps used by the Turing machine
e in the length of the input

@ Function computable by Turing machine

o discrete

e exact implementation of function (not approximation)
@ When an RNN used as a Turing machine

e input, a binary sequence

e output, a binary output (discretized)

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 15 / 54

Recurrent Neural Networks

An RNN outputs at each time step with recurrent connections between hidden
units

Figure 7: Recurrent hidden units’.

I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 16 / 54

http://www.deeplearningbook.org

Recurrent Neural Networks

Recurrent Neural Networks

An RNN outputs at each time step with recurrent connections between hidden
units
al) = b+ Wh(1 4 ux®

h(Y) = tanh(a(®)
o) = ¢+ Vh(®
§() = softmax(o(*))

b, c are biases, weight matrices U (input-to-hidden), W (hidden-to-hidden), V
(hidden-to-output)
Total loss between sequence of x and corresponding sequence of y:

L({x(l)7 ... ,x(")}, {y(l), . ,y(T)}>
— 31
t

= - Z l0g Prmodel (y(t)|{x(1), cee 7x(t)})
t

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 17 / 54

Recurrent Neural Networks

An RNN outputs at each time step with recurrent connections between hidden
units

L<{x(1), GG 7y<r)}> — 31
t
= - Z |Og Pmodel <y(t) ‘{x(l)v ey x(t)}>
t

L(®) negative log-likelihood of y(t) given x(1) ... x(t)
Computing gradient of this loss function expensive
@ Forward propagation pass, Backward propagation pass
@ Runtime O(7) and cannot be reduced with parallelization
e Memory O(71)

@ Back-propagation applied to unrolled graph with O(r)
back-propagation through time (BPTT)

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 18 / 54

Recurrent Neural Networks

Recurrent Neural Networks

An RNN outputs at each time step with recurrent connections from output to
next step hidden units

- strictly less powerful without hidden-to-hidden recurrence

- cannot simulate a universal Turing machine

- output has to capture all past history

+ training can be parallelized with gradient computed in isolation
For training Teacher forcing can be used

0
O,

L

oS
T
//

’
\
N

0-0.0,40),
,

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 19 / 54

http://www.deeplearningbook.org

Recurrent Neural Networks

Teacher Forcing

@)
v
U U
Train time Test time

Figure 9: lllustration of teacher forcing®.

9] Goodfellow, Y Bengio, and A Courville. Deep Learning.

http://www.deeplearningbook.org. MIT Press, 2016.

Recurrent Neural Networks (RNNs) 27 October 2017 20 / 54

m Cinar, Eric Gaussier

http://www.deeplearningbook.org

Teacher Forcing

Teacher Forcing emerge from the maximum likelihood criterion

@ The conditional maximum likelihood criterion

log p <y(1)’ y@ |x0) x(2)>

~ log p(y(z) 1y 1) x(2)> +logp <y(1) X, x(2)>

Enables to avoid BPTT (without hidden-to-hidden connections)

Teacher forcing can be applied also to models with hidden-to-hidden
connections

But, BPTT is necessary for hidden-to-hidden connections

Both BPTT and teacher forcing can also be used

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 21 /54

Teacher Forcing

Possible disadvantage of strict teacher forcing in use of open-loop mode
Open-loop network output feed back as input
Issues with difference in inputs of training and test

@ Using both teacher-forced inputs and free-running input during training

@ By predicting the correct target a number of steps in the future through
unfolded output-to-input paths

@ Randomly choose between generated values or actual values during training

@ Exploit curriculum learning by gradually using more generated values as
input

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 22 /54

Computing Gradient in RNNs

Computing gradient is applying generalized back propagation to unrolled
computation graph

@ The computational graph nodes has parameters U, V, W, b, ¢ and sequence

of nodes indexed by t for x(t), h(t), o(t) and L(®)

@ Start with the nodes proceeding the final loss:

oL
oL

e Outputs o) input to softmax to obtain § probabilities over output.
o Loss negative log-likelihood of true target y(*) given input
@ Gradient VL on output at time step t, for all i, t:
oL oL aL®
_ ,\.(t) -1

(Vowl)i = PRCRTICIPNO) Yi iy

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017

23 /54

Computing Gradient in RNNs

At final step 7, h(") only has 0™ as a descendent, so gradient:

Vi L =VTV L

We continue iterating back in time to back-propagate gradients through time,
fromt=7—1tot=1
Here, h(t) (for t < 7) has descendents both of and ht+!

Hht+1) T 9ol T
Vol = (8h(f)> (Vhe L) + (6!1(f)> (Vowl)
2
=W (Ve L)diag<1 — (hf“)) + VT (Voo l)

where diag(1 — (h*1)?) represent the diagonal matrix of 1 — (h!*!)? (Jacobian of
hyperbolic tangent of the hidden unit i at time t + 1)

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 24 / 54

Computing Gradient in RNNs

We can obtain the gradients on the parameter nodes once we obtain for internal
nodes of computational graph

Vel = Zt: (3;) Zv
Vol = Z (g:g) Vol = Zdiag(l - (h<f>)2>vth
S (et

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 25 / 54

Computing Gradient in RNNs

We can obtain the gradients on the parameter nodes once we obtain for internal
nodes of computational graph

Vwf the contribution of W to the value of f due to all edges in the graph
W() are dummy variables as copies of W but each is used only at time step t
Vw indicates the contribution of weights at time step t to the gradient

VWL_ZZ(h(r)) wh = Zd'ag<1—())(Vh L) (=D,
VuL—ZZ(mw 2 Zd.ag<1())(vhh L) w0

No need to compute gradient with respect to x(t) since no parameter as ancestors

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 26 / 54

RNNSs as Directed Graphical Models

Loss should be chosen according to given task
Interpret output as a probability distribution
Define loss function using the cross-entropy associated with this distribution

@ An RNN to estimate the conditional distribution of the next sequence
element y() given past elements, we maximize log-likelihood:

log p(y® |x™), ..., x()

@ where outputs y conditionally independent given the sequence x
o If there exist connections from output at one time step to next time step

log p(y @ xD),....,x®,y®, .. y(t-D)

@ An RNN models scalar random variables Y = {y®) ... y(M} with no
additional inputs (input at ¢ is output at t — 1), the joint distribution for
conditional probabilities:

P(Y) = P(yWD, ...y HP yED y(e=2 ()

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 27 / 54

RNNSs as Directed Graphical Models

e An RNN models scalar random variables Y = {y(), ... y(M} with no
additional inputs (input at ¢ is output at t — 1), the joint distribution for
conditional probabilities:

P(Y) = P(yW,y = T PyO 1 yte=2) oy
t=1

L=>"10
t

where L(t) = —log P(y(t) = y()]y(t=1) ,(t=2) " (1))

o Negative log-likelihood:

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 28 / 54

RNNSs as Directed Graphical Models

The edges of the graph represent direct dependency
Markov assumption edges from {y(t=%) ... yt=1} to y* rather than whole history
The graphical model over y values with complete graph structure:

Figure 10: Fully connected graphical model™.

(t) j
10| Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 29 / 54

http://www.deeplearningbook.org

RNNSs as Directed Graphical Models

Provides efficient parametrization over observations
If y can take k different values, tabular representation O(k™)
RNN uses the same function f, 6 at each time step
@ the number of parameters in RNN O(1) as a function of sequence length
@ Due to reduced number of parameters optimizing might be difficult
@ Assumption of stationarity, the conditional probability over variables at t + 1
given the variables at time t is stationary
With h(®) nodes decouples past and future
E.g. A variable y() may influence y(9) through h

Figure 11: Conditional distributions for hidden units are deterministic'®.

11| Goodfellow, Y Bengio, and A Courville. Deep Learning.
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 30 / 54

http://www.deeplearningbook.org

Drawing samples from an RNN model

Sampling from conditional distribution at each time step
How to determine the length of the sequence:

o If output is a symbol from a vocabulary, having a special symbol indicate the
end of a sequence

@ An extra Bernoulli output to decide to continue or halt

o E.g. RNN produces a sequence of real numbers, new output unit usually
sigmoid with cross entropy loss.
e Sigmoid maximize log-probability of the sequence ends or not
@ An extra output to determine the sequence length 7
e An extra output predicts the integer 7
E.g. sample an integer 7 and then sample 7 steps of data
o Here, RNN needs an extra input consist of value of 7 or number of remaining
steps 7 — t
o Extra input to avoid abrupt ending sequence

Px®, . x Ty = ()P, x| 1)

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 31 /54

Modeling Sequences Conditioned on Context with RNNs

RNNs with a single vector of x as input instead of sequence of vectors x(t)
Providing an extra input to an RNN:

@ as an extra input at each time step
@ as the initial state h(®
@ both

Figure 12: Vettor to sequence'?.

12| Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 32 /54

http://www.deeplearningbook.org

Recurrent Neural Networks

Modeling Sequences Conditioned on Context with RNNs

An input sequence of x(t) instead of a single input
Conditional distribution of P(y™®, ... y(™|xM .. x(7)) makes a conditional
independence assumption

H P(yt|x®, ... x®)
t

By adding connections from output at time t to hidden unit at time t + 1:

Hence, the output values are not forced to be conditionally independent for this
model:

Figure 13: Hidden and output recurrence®.

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 33 /54

http://www.deeplearningbook.org

Bidirectional RNNs

Figure 14: Bidirectional RNN**.

14| Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 34 /54

http://www.deeplearningbook.org

Bidirectional RNNs

@ A causal structure, state at time t
captures only past

e Many applications output y(?)
after processing the whole input
sequence
e.g. in speech recognition,
handwriting recognition

@ Bidirectional RNN combines RNN
moves forward through time h and
backward through time g Figure 15: Bidirectional RNN?.

2] Goodfellow, Y Bengio, and A Courville. Deep L
http://www.deeplearningbook.org. MIT Press, 20

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 35 /54

http://www.deeplearningbook.org

Encoder-Decoder Sequence-to-Sequence Architectures

An RNN map an input sequence to an output sequence which is not necessarily
the same length

e.g. speech recognition, machine translation, question answering
The input to RNN is called the context C, summarize the input sequence

X — (x(0),... x(r)
ODOOO

Figure 16: Sequence-to-sequence Architecture®®.

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 36 / 54

http://www.deeplearningbook.org

Encoder-Decoder Sequence-to-Sequence Architectures

An encoder or reader or input process input to the sequence

A decoder or writer or output conditioned on a fixed length vector to generate
Y = (y®,...,y{™)) Two RNNs trained to jointly maximize average of

log P(yW), ..., y(m)|x(M) . x(n)

The last state of encoder h,,, typically used as C

Encoder
RERN
> hia
AN

¥ ecods ¥]

Y SN
O e
efofole
\ |

Figure 17: Sequence-to-sequence Architecture'®.

" “Recurrent Neural Networks (RNNs) 27 October 2017 37 / 54

Yagmur Gizem Cinar, Eric Gaussier

http://www.deeplearningbook.org

Deep Recurrent Networks

RNNs decomposed into three main blocks of parameters and associated
transformations:

@ from input to hidden state
@ from previous hidden state to next hidden state
@ from hidden state to output

Increasing the depth of the RNNs improves

(a) hierarchical hidden recurrent states

(b) deeper computation introduced to input-to-hidden, hidden-to-hidden, and
hidden-to-output.

(c) Skip connections can handle path-lengthening effect

Deep Recurrent network larger capacity of representation but might increase the
difficulty of optimization

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 38 /54

Deep Recurrent Networks

Deep Recurrent Networks

OO

QGG’ °

(b) (c)

Figure 18: An RNN can be deep many ways. (a) The recurrent state organized into
groups hierarchically. (b) Introduced in input-to-hidden, hidden-to-hidden, and
hidden-to-output. (c) Skip connections can handle path-lengthening effect™®.

7] Goodfellow, Y Bengio, and A Courville. Deep Learning.

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017

39 /54

http://www.deeplearningbook.org
http://www.deeplearningbook.org

The Challenge of Long-Term Dependencies

RNNS might construct a very deep computational graphs by repeatedly applying
the same operation at each time step of a long sequence

Gradients propagated many stages tends to vanish or explode

Even if the network is stable (can store memories and gradients not exploding),
exponentially smaller weights are given to long-term interactions than short ones
Recurrence relation (for a simple network without nonlinear activation and input x)

h(® — wh(t—1

After t time steps (repeatedly multiplying with W)

h(d — (Wt)Th(O)
W has an eigendecomposition W = QA QT, with orthogonal Q

h(t) _ QT/\tQ h(O)

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 40 / 54

Leaky Units and Multiple Time Scales

One way of dealing with long term dependencies having multiple time scales
By combining

o Fine-grained time scales
@ Coarse time scales

Efficiently transfer information from distant past to present
Various strategies for building both fine and coarse time scales

@ Skip connections across time

@ Leaky units integrate signals with different time constants
@ Removal of some connections

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017

41/ 54

Skip Connections Through Time

Gradients may vanish or explode with respect to number of time steps

Recurrent connections with time delay of d

Gradients diminish exponentially as a function of 7 rather than 7

°
°
o Gradient might still explode with delayed and single step connections
@ Skip connections allow to capture longer dependency

°

But they might not represent all long-term dependencies

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 42 / 54

Leaky Units and Spectrum of Different Time Scales

Another way to obtain paths on which the product of derivatives close to 1
@ Having units with linear self-connections and a weight near 1 on these

connections

Accumulate a running average u(9) of some value /(%)

By applying update rule u(9) < o p(t=1) 4 (1 —) ()

« parameter is an example of linear self connection from ;(t=1) to p(t)

When « is near 1, the running average remembers information about past for
a long time

When « is near 0, information about past rapidly discarded

@ Hidden units with linear self-connections can behave similar to running
averages

@ Those hidden units called leaky units

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 43 / 54

Leaky Units and Spectrum of Different Time Scales

Linear self-connection with a weight near 1 is a way of ensuring the access values
from past

@ More smoothly and flexibly compared to skip connections
@ By adjusting « rather than skip-length d

Two strategy of setting time constants of leaky units:
o Fixing values manually remain constant

@ As free parameters and learn them

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 44 / 54

Removing Connections

Another approach to dealing with long-term dependencies is organizing the state
of an RNN at multiple scales

@ Information flowing easily at a slower time scales

@ Actively removing single step connections ad replacing them with longer
conections

@ Units forced to operate on a long time scale

@ Compared to skip connections through time

e Skip connections add edges
o Skip connections can learn to operate on a long time scale or focus on
short-term connections

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 45 / 54

Long Short-Term Memory and Other Gated RNNs

The most effective sequence models used in practical applications are gated
RNNs

e Long short-term memory (LSTM)
e gated recurrent unit (GRU)

Like leaky units goal is to create paths through time that have derivatives do not
vanish nor explode

@ Leaky units has connection weights that manually chosen or learned

@ Gated RNNs generalizes this to connections weights that may change at each
time step

@ Leaky units allows to accumulate information

@ But once this information is used, it might be useful to forget
@ A mechanism to forget the old state by setting it to 0

@ Gated RNNs learn to decide when to forget a state

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 46 / 54

Long Short-Term Memory (LSTM)

e Core contribution of initial LSTM model'? is self-loops to introduce paths
that gradient can flow

@ Gers et al. make the weight on this self-loop weight conditioned on the
context?®

o With gated weight of self-loop (controlled by another unit), time scale
integration dynamically controlled

@ The LSTM is very sucessful in many domains: handwriting detection and
generation, time series forecasting, machine translation, speech recognition..

@ LSTM recurrent networks have "LSTM cells” that have internal recurrence, a
self loop, in addition to outer recurrence of RNN

19Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735-1780.

20Felix A. Gers, Jiirgen A. Schmidhuber, and Fred A. Cummins. “Learning to Forget:
Continual Prediction with LSTM". In: Neural Comput. 12.10 (Oct. 2000), pp. 2451-247%1.

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 47 / 54

Long Short-Term Memory (LSTM)

@ Each LSTM cell has the same inputs and outputs with gating units
controlling information flow

e State unit s,.(t) has a linear self-loop

o Self-loop weight of s,-(t) controlled by a forget gate unit f,.(t) for time step t
and cell f

° fi(t) sets weight of s,-(t) a value of (0,1) via sigmoid unit:

t)_a<b,-f+ZU Z “1)
J

o x() is the current input, h(!) is the current hidden layer vector
e b bias, U input weights and W' recurrent weights for the forget gates

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 48 / 54

Long Short-Term Memory (LSTM)

@ The LSTM cell internal state update:

s = £ 4 glY <b+ZU7JX(t)+ZW,Jth1>

@ b bias, U input weights and W recurrent weights into the LSTM cell

@ The external input gate g() is calculated as forget gate but with own

parameters:
(z “)+2W5h5”>
J
(¥)

@ The output h,(t) of the LSTM cell can also be shut off via output gate g;
which also uses a sigmoid unit for gating:

A0 — tanh (<f>) 2

I

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 49 / 54

Long Short-Term Memory (LSTM)

Variant of LSTM uses the cell state s* as an extra input to the three gates, this

i

would require three additional parameters

output,

self-loop

input (ot gate rget ga output gate

Figure 19: Block diagram of the LSTM%.

o - ~ ~ ' .
Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 50 / 54

http://www.deeplearningbook.org

Gated Recurrent Unit (GRU)

Comparison to LSTM there is a single gating unit simultaneously controls the
forgetting factor and the decision to update the state unit

@ The update equations

A = 1l 3 S w)
J j

@ u stands for update gate:

u = a(b,-“ + DU+ Do wy hf”)
J J

@ r stands for reset gate:

t’=o<b,-’+ZU F3w f”)
J

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 51 / 54

Gated Recurrent Unit (GRU)

Reset and update gates can individually ignore parts of the state vector

o Update gates act like conditional leaky integrator that
o Update gates linearly integrate any dimension

e choosing to copy it or completely
e ignore it by replacing it with new target state value
e target state is state the leaky integrator wants to converge towards

@ Reset gates control which parts of the state get used to compute the next
target state

@ Reset gates introduce an additional nonlinear effect in the relationship
between past and future state

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 52 / 54

Optimization for Long-Term Dependencies

Optimization for Long-Term Dependencies

When the parameter gradient is very large, gradient descent parameter update

could throw parameters far away
A simple solution is clipping gradients

o Clip gradient from a minibatch element-wise before parameter update
o Clip the norm ||g|| of gradient g before parameter update

Without clipping With clipping

J(w,b)
J(w,b)

Figure 20: Gradient Clipping®.

22| Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, Eric Gaussier

Recurrent Neural Networks (RNNs) 27 October 2017

53 /54

http://www.deeplearningbook.org

Optimization for Long-Term Dependencies

Recurrent Neural Networks

Questions?

References

ﬁ Felix A. Gers, Jirgen A. Schmidhuber, and Fred A. Cummins. “Learning to

Forget: Continual Prediction with LSTM". In: Neural Comput. 12.10 (Oct.
2000), pp. 2451-2471.

ﬁ | Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

ﬁ Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Comput. 9.8 (Nov. 1997), pp. 1735-1780.

Yagmur Gizem Cinar, Eric Gaussier Recurrent Neural Networks (RNNs) 27 October 2017 54 / 54

http://www.deeplearningbook.org

	Recurrent Neural Networks
	Bidirectional Recurrent Neural Networks
	Encoder-Decoder Sequence-to-Sequence Architectures
	Deep Recurrent Networks
	Long-Term Dependencies
	Leaky Units and Multiple Time Scales
	Long Short-Term Memory and Other Gated RNNs
	Optimization for Long-Term Dependencies

