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Feedforward Neural Networks - Multilayer Perceptrons

Multilayer Perceptrons

Feedforward Neural Networks, Deep feedforward Networks

Goal

to approximate function f ∗

y = f ∗(x) (1)

Classification y ∈ {c1, c2, . . . cK}
Regression y ∈ R

A feedforward network

y = f (x; θ) (2)

Feedforward: x through f and finally y
No feedback connections as recurrent neural network
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Feedforward Neural Networks - Multilayer Perceptrons

Multilayer Perceptrons

Feedforward Neural Networks

network: composing different functions

a directed acyclic graph

e.g. f (1), f (2), and f (3)

f (x) = f (3)(f (2)(f (1)(x)))

f (1) is 1st layer
f (2) is 2nd layer

final layer is called output layer

other layers are called hidden layers

length of the chain is the depth of the network

width is the dimensionality of the hidden layers
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Feedforward Neural Networks - Multilayer Perceptrons

Feedforward Neural Networks

loosely inspired by Neuroscience

Many units acts at the same time

Each unit receives from many other units and computes its own activation

MLP as a function approximation machines designed to generalize well

Linear models

+ fit efficiently and reliable with convex optimization
- limited to linear function

One way to obtain nonlinearity is a mapping φ can be learned with deep learning

y = f (x; θ,w) = φ(x; θ)Tw (3)

θ parameters of φ

w ∈ Rn parameters of desired map from φ(x) to y
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Feedforward Neural Networks - Multilayer Perceptrons

Example: Learning XOR

(Goodfellow 2017)

XOR is not linearly separable

CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right) In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

169

Figure 6.1, leftFigure 1: XOR in x space1.

1Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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XOR Example

Example: Learning XOR

X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
XOR is not linearly separable

XOR target function y = f ∗(x)

model function y = f (x; θ)

XOR MSE loss function

J(θ) =
1

4

∑

x∈X
(f ∗(x)− f (x; θ))2

If model is a linear single-layer with one unit

f (x; θ) = xTw + b
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XOR Example

Example: Learning XOR

A single-layer with one hidden unit also called perceptron:

f (x; θ) = xTw + b

cannot separate XOR

Linear separability (5)
Example:
N = 4, d = 2: 24 = 16 dichotomies
14 dichotomies are linearly separable (everything but XOR)
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Figure 2: XOR is not linearly separable2.

2Johan Suykens. Lecture notes in Artificial Neural Networks. 2015.
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XOR Example

Example: Learning XOR

A single layer with two hidden units

(Goodfellow 2017)

Network Diagrams
CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. (Right)In this style, we draw a node in the graph for
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrix W describes
the mapping from x to h, and a vector w describes the mapping from h to y. We
typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.

model, we used a vector of weights and a scalar bias parameter to describe an
affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x>W:,i + ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011a) defined by the activation
function g(z) = max{0, z} depicted in figure 6.3.

We can now specify our complete network as

f(x; W , c, w, b) = w> max{0, W>x + c} + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =


1 1
1 1

�
, (6.4)

c =


0
�1

�
, (6.5)

174

Figure 6.2
Figure 3: Network diagrams3.

3Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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XOR Example

Example: Learning XOR

One hidden layer with two hidden units

h = f (1)(x;W, c)

y = f (2)(h;w, b)

f (x,W, c,w, b) = f (2)(f (1)(x))

W and w weights of a linear transformation
b and c biases

f (1)(x) = WTx

f (2)(h) = hTw

f (x) = wTWTx

(intercept/bias terms ignored)
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XOR Example

Example: Learning XOR

For a nonlinearity: activation function g

h = g(WTx + c)

A rectified linear unit (ReLU) is the activation function for many feedforward
networks

g(z) = max{0, z}

(Goodfellow 2017)

Rectified Linear Activation

CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
However, the function remains very close to linear, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.

175

Figure 6.3
Figure 4: ReLU activation function4.

4Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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XOR Example

Example: Learning XOR

Complete network

f (x,W, c,w, b) = wTmax0,WTx + c

Let

W =

[
1 1
1 1

]

c =

[
0
−1

]

w =

[
1
−2

]

b = 0
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XOR Example

Example: Learning XOR

Design matrix X

X =




0 0
0 1
1 0
1 1




XW =




0 0
1 1
1 1
2 2




XW + c =




0 −1
1 0
1 0
2 1



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XOR Example

Example: Learning XOR

max{0,XW + c} =




0 0
1 0
1 0
2 1




wTmax{0,XW + c}+ b =




0
1
1
0



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Gradient-Based Learning

Gradient-Based Learning

In real life billions of model parameters

Gradient-based optimization algorithm provide solution with little error

Nonlinearity leads to a nonconvex loss function

Trained by iterative gradient-based optimizers

Global convergence is not guaranteed

Sensitive to initialization of parameters

initialize weights with small random values
bias can be 0 or small positive values e.g. 0.1
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Gradient-Based Learning

Gradient-Based Learning

Cost function:

J(w, b) = −Ex,y p̂data
logpmodel(y |x)

Mostly negative log-likelihood as a cost function

So, minimizing the cost leads to maximum likelihood estimation

Cross entropy between the training data and model’s prediction as a cost
function

Typically total cost composed of cross entropy and regularization
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Gradient-Based Learning

Gradient-Based Learning

Cost functions

mean squared error (MSE)

f ∗ = argmin
f

Ex,y pdata
||y − f (x)||2

Mean absolute error (MAE)

f ∗ = argmin
f

Ex,y pdata
||y − f (x)||1
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Gradient-Based Learning

Gradient-Based Learning

Output units
The choice of output function determines the cross entropy

(Goodfellow 2017)

Output Types
Output Type Output 

Distribution
Output 
Layer

Cost 
Function

Binary Bernoulli Sigmoid Binary cross-
entropy

Discrete Multinoulli Softmax Discrete cross-
entropy

Continuous Gaussian Linear Gaussian cross-
entropy (MSE)

Continuous Mixture of 
Gaussian

Mixture 
Density Cross-entropy

Continuous Arbitrary See part III: GAN, 
VAE, FVBN Various

Figure 5: Output units5.

5Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Hidden Units

Hidden Units

Hidden units are composed of

input vectors x

computing an affine transformation z = WTx + b

element-wise nonlinear function g(z)

Some activation functions g(z) are not differentiable at all points
e.g. ReLU not differentiable at z = 0
But still perform well in practice
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Hidden Units

Hidden Units Activation Function

Why perform well in practice?

Training algorithms do not usually reach to the global minimum (nonconvex)
but reduce it significantly

(Goodfellow 2017)

Approximate Optimization
CHAPTER 4. NUMERICAL COMPUTATION

x

f
(
x
)

Ideally, we would like

to arrive at the global

minimum, but this

might not be possible.

This local minimum

performs nearly as well as

the global one,

so it is an acceptable

halting point.

This local minimum performs

poorly and should be avoided.

Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.
The directional derivative in direction u (a unit vector) is the slope of the

function f in direction u. In other words, the directional derivative is the derivative
of the function f(x + ↵u) with respect to ↵, evaluated at ↵ = 0. Using the chain
rule, we can see that @

@↵f(x + ↵u) evaluates to u>rxf(x) when ↵ = 0.
To minimize f , we would like to find the direction in which f decreases the

fastest. We can do this using the directional derivative:

min
u,u>u=1

u>rxf(x) (4.3)

= min
u,u>u=1

||u||2||rxf(x)||2 cos ✓ (4.4)

where ✓ is the angle between u and the gradient. Substituting in ||u||2 = 1 and
ignoring factors that do not depend on u, this simplifies to minu cos ✓. This is
minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent or gradient descent.

Steepest descent proposes a new point

x0 = x� ✏rxf(x) (4.5)

85

Figure 4.3
Figure 6: Approximate optimization6.

Nondifferentiable at a small number of points

Implementation return 1 for nondifferentiable inputs

6Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Hidden Units

Rectified Linear units

g(z) = max{0, z}

+ Easy to optimize, close to linear units

+ Derivatives through ReLU remain large when active

+ Derivative is 1 when active

+ Second order derivative is 0 almost everywhere

+ Derivative more useful without second-order effects

− ReLU cannot learn via gradient when activation is 0

Typically applied to affine transformation

h = g(WTx + c)

small positive b e.g. b = 0.1 enables to allow derivatives to pass

− > generalized ReLUs to have gradient everywhere
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Hidden Units

Generalizations of Rectified Linear Units

3 generalizations based on nonzero slope αi when zi < 0

hi = g(z, α)i = max(0, zi ) + αimin(0, zi )

Absolute value rectification αi = −1 and g(z) = |z |
Leaky ReLU αi a small value like 0.01

Parametric ReLU (PReLU) αi is a learnable parameter
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Hidden Units

Maxout units

Maxout units divide z into groups of k values

For each output is the maximum element of these groups

g(z)i = max
j∈G(i)

zj

where G(i) is set of indices for group i , {(i − 1)k + 1, . . . , ik}
Maxout can learn piecewise linear convex function up to k pieces

Maxout generalize rectified units further

Requires more regularization compared to rectified units

Maxout with number of elements in group and large number of examples can
work without regularization

Next layer can get k times smaller
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Hidden Units

Sigmoidal Activation Functions

Logistic sigmoid σ

σ(z) =
1

1 + exp(−z)

Hyperbolic tangent tanh

tanh(z) =
1− exp(−2z)

1 + exp(−2z)
Activation functions σ(·)

• Some examples:

-5 0 5
-2

-1

0

1

2
sigmoid

-5 0 5
-2

-1

0

1

2
tanh

-5 0 5
-2

-1

0

1

2
sat

-5 0 5
-2

-1

0

1

2
sign

• The choice of the activation function depends on the specific application
(classification, regression, ...). For neurons of input and output layer a
linear characteristic is often chosen.

• Derivatives of σ(·):
sigmoid: σ

′
= σ(1 − σ) [σ(x) = 1

1+exp(−x)]

tanh: σ
′
= 1 − σ2 [tanh(x) = 1−exp(−2x)

1+exp(−2x)]

Course - Artificial Neural Networks 4

Figure 7: Sigmoid σ and tanh activation functions7.

7Johan Suykens. Lecture notes in Artificial Neural Networks. 2015.
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Hidden Units

Gradient-Based Learning

Sigmoidal units

tanh(z) = 2σ(2z)− 1

sigmoid predict that a binary variable is 1

Sigmoidal units saturates large and gradient-based learning difficult

tanh is more preferable than σ for hidden units

Compatible with the gradient-based learning with a cost function that can
undo the saturation as output units

are more common in recurrent networks, many probabilistic model and
autoencoders
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Architecture Design

Architecture Design

Architecture

Overall network structure

How many units

How to connect to each other

Layer is organized groups of units

Mostly in a chain structure

h(1) = g (1)(W(1)Tx + b(1))

h(2) = g (2)(W(2)Th(1) + b(2))
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Architecture Design

Architecture Design

Architecture

Main design choices

depth of the network
width of each layer

Deeper networks

fewer units per layer
fewer parameters
tend to be harder to optimize

Ideal network architecture via experimentation guided by monitoring the
validation error
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Architecture Design

Architecture Design

Universal approximation theorem

A feedforward network with a linear output
At least one hidden layer with squashing activation function with enough
number of hidden units
can approximate any continuous function on a closed and bounded subset of
Rn with any desired (nonzero) error

MLP able to represent function of interest though learning not guaranteed by
the training

optimization algorithm might fail to find the corresponding parameter values
overfitting
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Architecture Design

Architecture Design

Universal approximation theorem and Depth

A feedforward network with one layer can represent any function being
infeasible large
Deeper models reduce the number of units and can reduce the generalization
error

The number of linear regions carved out by a deep rectifier network8

O

((
n

d

)d(l−1)

nd
)

where input dimension d , depth l , units per hidden layer n

Number of linear regions for a maxout network with k filters per unit

O
(
k(l−1)+d

)

8Guido Montúfar et al. “On the Number of Linear Regions of Deep Neural Networks”. In:
Proceedings of the 27th International Conference on Neural Information Processing Systems -
Volume 2. NIPS’14. Montreal, Canada: MIT Press, 2014, pp. 2924–2932.
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Architecture Design

Architecture Design

Empirically deeper networks generalize better

(Goodfellow 2017)

Better Generalization with 
Greater DepthCHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
et al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in chapter 9, use specialized patterns of sparse connections
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.

202

Figure 6.6
LayersFigure 8: Effect of depth9.

9Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Architecture Design

Architecture Design

(Goodfellow 2017)

Large, Shallow Models Overfit More

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters

⇥10

8

91

92

93

94

95

96

97

T
e
s
t

a
c
c
u
r
a
c
y

(
p
e
r
c
e
n
t
)

3, convolutional

3, fully connected

11, convolutional

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow et al. (2014d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).

203

Figure 6.7
Figure 9: Effect of number of parameters10.

10Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Back-Propagation

Forward propagation is flow from x to ŷ

During training forward propagation continue onward until cost J(θ)

backprop from cost J(θ) to network backwards to compute the gradient

Numerical evaluation of analytical gradient expression computationally
expensive

Backprop makes it simple and inexpensive

Backprop is a method of computing gradient

Notation

∇xf (x, ~y) is the gradient of an arbitrary function f
x is a set of variable derivatives desired
y is input to function derivatives not desired
∇θJ(θ) is gradient of cost function
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Back-Propagation

Back-propagation

(Goodfellow 2017)

Simple Back-Prop Example
CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the graph.
This style is explicit and unambiguous, but for networks larger than this example, it can
consume too much space. (Right) In this style, we draw a node in the graph for each entire
vector representing a layer’s activations. This style is much more compact. Sometimes
we annotate the edges in this graph with the name of the parameters that describe the
relationship between two layers. Here, we indicate that a matrix W describes the mapping
from x to h, and a vector w describes the mapping from h to y. We typically omit the
intercept parameters associated with each layer when labeling this kind of drawing.
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Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
The function remains very close to linear, however, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions. 170
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Figure 10: Back-propagation11.

11Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Back-propagation

Computational Graphs

Each node a variable

A variable might be scalar, vector, matrix or tensor

An operation a simple function of one or more variables

Functions more complex, composed of many operations

directed edge from x to y indicates x used to calculate y

Yagmur Gizem Cinar, Eric Gaussier Multilayer Perceptrons (MLP) 17 March 2017 35 / 42



Back-Propagation

Back-propagation

Examples of Computational Graphs

(Goodfellow 2017)

Computation Graphs
CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.8: Examples of computational graphs. (a)The graph using the ⇥ operation to
compute z = xy. (b)The graph for the logistic regression prediction ŷ = �

�
x>w + b

�
.

Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u(i). (c)The
computational graph for the expression H = max{0, XW + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X. (d)Examples a–c applied at most one operation to each variable, but it
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make both the prediction ŷ and the weight decay penalty �

P
i w2

i .
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Figure 11: Computation Graphs12.

12Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Back-propagation

Back-propagation is a chain rule of calculus

Highly efficient

x is a real number and f , g : R→ R, y = g(x) and z = f (g(x)) = f (y)

Chain rule:
dz

dx
=

dz

dy

dy

dx

For x ∈ Rm, y ∈ Rn, g : Rm → Rn and f : Rn → R

∂z

∂xi
=
∑

j

∂z

∂yj

∂yj
∂x

∇xz =

(
∂y

∂x

)T

∇yz

where ∂y
∂x is n ×m Jacobian matrix of g

Yagmur Gizem Cinar, Eric Gaussier Multilayer Perceptrons (MLP) 17 March 2017 37 / 42



Back-Propagation

Repeated Subexpressions

Input w ∈ R, f : R→ R, x = f (w), y = f (x), z = f (y)

(Goodfellow 2017)

Repeated Subexpressions

CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w 2 R be the input to the graph. We use the same function f : R! R
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute @z

@w , we apply equation 6.44 and obtain:

@z

@w
(6.50)

=
@z

@y

@y

@x

@x

@w
(6.51)

=f 0(y)f 0(x)f 0(w) (6.52)
=f 0(f(f(w)))f 0(f(w))f 0(w) (6.53)

Equation 6.52 suggests an implementation in which we compute the value of f(w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.
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Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w 2 R be the input to the graph. We use the same function f : R! R
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute @z

@w , we apply equation 6.44 and obtain:
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(6.50)

=
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@w
(6.51)

=f 0(y)f 0(x)f 0(w) (6.52)
=f 0(f(f(w)))f 0(f(w))f 0(w) (6.53)

Equation 6.52 suggests an implementation in which we compute the value of f(w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.
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Figure 6.9
Back-prop avoids computing this twice

Figure 12: Repeated Subexpressions13.

13Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Symbol-to-symbol derivatives

Algebraic and graph-based representations are symbolic representations
Symbol-to-number differentiation: Torch, Caffe
Symbol-to-symbol differentiation: Theano, Tensorflow

(Goodfellow 2017)

Symbol-to-Symbol 
Differentiation

CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
this approach, the back-propagation algorithm does not need to ever access any actual
specific numeric values. Instead, it adds nodes to a computational graph describing how
to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left)In this example, we begin with a graph
representing z = f(f(f(w))). (Right)We run the back-propagation algorithm, instructing
it to construct the graph for the expression corresponding to dz

dw . In this example, we do
not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

Some approaches to back-propagation take a computational graph and a set
of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch
(Collobert et al., 2011b) and Caffe (Jia, 2013).

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This
is the approach taken by Theano (Bergstra et al., 2010; Bastien et al., 2012)
and TensorFlow (Abadi et al., 2015). An example of how this approach works
is illustrated in figure 6.10. The primary advantage of this approach is that
the derivatives are described in the same language as the original expression.
Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher
derivatives. Computation of higher-order derivatives is described in section 6.5.10.

We will use the latter approach and describe the back-propagation algorithm in

214

Figure 6.10

Figure 13: Symbol-to-symbol example14.

14Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Forward Pass Fully Connected MLP

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

6.5.4 Back-Propagation Computation in Fully Connected MLP

To clarify the above definition of the back-propagation computation, let us consider
the specific graph associated with a fully-connected multi layer MLP.

Algorithm first shows the forward propagation, which maps parameters to6.3
the supervised loss L(ŷ y, ) associated with a single (input,target) training example
( )x y, , with ŷ the output of the neural network when is provided in input.x

Algorithm then shows the corresponding computation to be done for6.4
applying the back-propagation algorithm to this graph.

Algorithms and are demonstrations chosen to be simple and straightfor-6.3 6.4
ward to understand. However, they are specialized to one specific problem.

Modern software implementations are based on the generalized form of back-
propagation described in section below, which can accommodate any compu-6.5.6
tational graph by explicitly manipulating a data structure for representing symbolic
computation.

Algorithm 6.3 Forward propagation through a typical deep neural network and
the computation of the cost function. The loss L(ŷ y, ) depends on the output
ŷ and on the target y (see section for examples of loss functions). To6.2.1.1
obtain the total cost J , the loss may be added to a regularizer Ω(θ ), where θ
contains all the parameters (weights and biases). Algorithm shows how to6.4
compute gradients of J with respect to parameters W and b. For simplicity, this
demonstration uses only a single input example x. Practical applications should
use a minibatch. See section for a more realistic demonstration.6.5.7
Require: Network depth, l
Require: W ( )i , i , . . . , l ,∈ {1 } the weight matrices of the model
Require: b( )i , i , . . . , l ,∈ {1 } the bias parameters of the model
Require: x, the input to process
Require: y, the target output
h(0) = x
for dok , . . . , l= 1

a( )k = b( )k +W ( )k h( 1)k−

h( )k = (f a( )k )
end for
ŷ h= ( )l

J L= (ŷ y, ) + Ω( )λ θ
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Figure 14: Forward Pass Algorithm for a MLP15.

15Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Backward Pass Fully Connected MLP

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Algorithm 6.4 Backward computation for the deep neural network of algo-
rithm , which uses, in addition to the input6.3 x, a target y. This computation
yields the gradients on the activations a( )k for each layer k, starting from the
output layer and going backwards to the first hidden layer. From these gradients,
which can be interpreted as an indication of how each layer’s output should change
to reduce error, one can obtain the gradient on the parameters of each layer. The
gradients on weights and biases can be immediately used as part of a stochas-
tic gradient update (performing the update right after the gradients have been
computed) or used with other gradient-based optimization methods.

After the forward computation, compute the gradient on the output layer:
g ← ∇ŷJ = ∇ŷL(ŷ y, )

for dok l, l , . . . ,= − 1 1
Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if is element-wise):f
g ← ∇a( )k J f= g  (a( )k )
Compute gradients on weights and biases (including the regularization term,
where needed):
∇b( )k J λ= +g ∇b( )k Ω( )θ
∇W ( )k J = g h( 1)k−  + λ∇W ( )k Ω( )θ

Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g ← ∇h( 1)k− J = W( )k  g

end for

6.5.5 Symbol-to-Symbol Derivatives

Algebraic expressions and computational graphs both operate on symbols, or
variables that do not have specific values. These algebraic and graph-based
representations are called symbolic representations. When we actually use
or train a neural network, we must assign specific values to these symbols. We
replace a symbolic input to the network x with a specific numeric value, such as
[1 2 3 765 1 8]. , . , − . .

Some approaches to back-propagation take a computational graph and a set of
numerical values for the inputs to the graph, then return a set of numerical values
describing the gradient at those input values. We call this approach symbol-to-
number differentiation. This is the approach used by libraries such as Torch
( , ) and Caffe ( , ).Collobert et al. 2011b Jia 2013

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This
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Figure 15: Backward Pass Algorithm for a MLP16.

16Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, Eric Gaussier Multilayer Perceptrons (MLP) 17 March 2017 41 / 42

http://www.deeplearningbook.org


Back-Propagation

Next Week Recurrent Neural Networks

Questions?
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