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Feedforward Neural Networks - Multilayer Perceptrons

Multilayer Perceptrons

Feedforward Neural Networks, Deep feedforward Networks

Goal

to approximate function f*
y =f*(x) (1)

o Classification y € {c1, c,...cx}
@ Regression y € R

A feedforward network

y = f(x0) QJ

Feedforward: x through f and finally y
No feedback connections as recurrent neural network
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Multilayer Perceptrons

Feedforward Neural Networks

network: composing different functions

a directed acyclic graph
eg f1), f? and f)
f(x) = FO(FA(FD(x)))

@ is 1 layer
@ s 2" |ayer

final layer is called output layer
other layers are called hidden layers
length of the chain is the depth of the network

width is the dimensionality of the hidden layers
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Feedforward Neural Networks

loosely inspired by Neuroscience
@ Many units acts at the same time
@ Each unit receives from many other units and computes its own activation
@ MLP as a function approximation machines designed to generalize well

@ Linear models
+ fit efficiently and reliable with convex optimization
- limited to linear function

One way to obtain nonlinearity is a mapping ¢ can be learned with deep learning

y = f(x;0,w) = ¢(x;0) 'w 3)

@ 0 parameters of ¢
@ w € R" parameters of desired map from ¢(x) to y
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Example: Learning XOR
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Figure 1: XOR in x spacel.

Lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

.oreg. MIT Press. 2016.
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XOR Example

Example: Learning XOR

X={[o, O]Tv [0, l]Tv (1, O]Tv (1, 1]T}
XOR is not linearly separable

XOR target function y = f*(x)
model function y = f(x; 6)

XOR MSE loss function

J0) = 3 (760~ Fx )

xeX

If model is a linear single-layer with one unit

f(x;0) =x"w+ b
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Example: Learning XOR

A single-layer with one hidden unit also called perceptron:

f(x;0) =x"w+ b

@ cannot separate XOR

Figure 2: XOR is not linearly separable?.

2 Johan Suykens. Lecture notes in Artificial Neural Networks. 2015z
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XOR Example

Example: Learning XOR

A single layer with two hidden units

s

Figure 3: Network diagrams®.

3]an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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XOR Example

Example: Learning XOR
One hidden layer with two hidden units
h=rO(x;W,c)

y = f(2)(h;w,b)
F(x, W, c,w, b) = FO()(x))

W and w weights of a linear transformation
b and c biases

f(x) =w WTx
(intercept/bias terms ignored)
Multilayer Perceptrons (MLP) 17 March 2017
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XOR Example

Example: Learning XOR

For a nonlinearity: activation function g

h=g(W'x+c)

A rectified linear unit (ReLU) is the activation function for many feedforward
networks

g(z) = max{0, z}

max{0, z}

9(z)

Figure 4: ReLU activation function®.

Yagmur Gizem Cinar, Eric Gaussier
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Example: Learning XOR

Complete network

f(x,W,c,w, b) = w max0, W'x + ¢

Let

1 1
W__l 1]
c— 0
-1

|1

W=l

b=0

Yagmur Gizem Cinar, Eric Gaussier

Multilayer Perceptrons (MLP)

17 March 2017

13 / 42



Example: Learning XOR

Design matrix X

00

01
X=11 0
_1 1_

0 o

1 1
XW= 1] |
_2 2_

(0 -1

1 0

XW +c = 1 0
2 1
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Example: Learning XOR

0 0

10

max{0, XW + ¢} = 1 0

2 1
[0
w max{0,XW +c} + b = }
0
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Gradient-Based Learning

In real life billions of model parameters

Gradient-based optimization algorithm provide solution with little error
Nonlinearity leads to a nonconvex loss function

Trained by iterative gradient-based optimizers

Global convergence is not guaranteed

Sensitive to initialization of parameters

e initialize weights with small random values
o bias can be 0 or small positive values e.g. 0.1
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Gradient-Based Learning

Cost function:

J(w, b) = —Exy p,,.,108Pmodel ([X)
Mostly negative log-likelihood as a cost function
So, minimizing the cost leads to maximum likelihood estimation

Cross entropy between the training data and model’s prediction as a cost
function

Typically total cost composed of cross entropy and regularization
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Gradient-Based Learning

Cost functions

@ mean squared error (MSE)

fr= arg;ninEx,y pasta | 1Y — f(x)”z
@ Mean absolute error (MAE)
f* = arg;nin Exy paal [y = ()11
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Gradient-Based Learning

Gradient-Based Learning

Output units

The choice of output function determines the cross entropy

Cost
Function

Binary cross-
entropy
Discrete cross-
entropy
Gaussian cross-

entropy (MSE)

Cross-entropy

Various

Output Output
Output Type _ . . L ) =
Distribution Layer
Binary Bernoulli Sigmoid
Discrete Multinoulli Softmax
Continuous Gaussian Linear
. Mixture of Mixture
Continuous . .
Gaussian Density
. . . See part I1I: GAN,
Continuous Arbitrary VAE. FVBN

Figure 5: Output units®.

o e d Ao
Multilayer Perceptrons (MLP)

Yagmur Gizem Cinar, Eric Gaussier

[ PR

17 March 2017

19 / 42


http://www.deeplearningbook.org

Hidden Units

Hidden units are composed of
@ input vectors x
e computing an affine transformation z=WTx + b
o element-wise nonlinear function g(z)

Some activation functions g(z) are not differentiable at all points
e.g. ReLU not differentiable at z =0
But still perform well in practice
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Hidden Units Activation Function

Why perform well in practice?

@ Training algorithms do not usually reach to the global minimum (nonconvex)

but reduce it significantly

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

f(x)

This local minimum performs
poorly and should be avoided.

Figure 6: Approximate optimization®.

o Nondifferentiable at a small number of points

@ Implementation return 1 for nondifferentiable inputs

6]an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Rectified Linear units

g(2) = max{0, 2}

+ Easy to optimize, close to linear units

+ Derivatives through ReLU remain large when active
+ Derivative is 1 when active

+ Second order derivative is 0 almost everywhere

+ Derivative more useful without second-order effects
— ReLU cannot learn via gradient when activation is 0

Typically applied to affine transformation
h=g(W'x+c)

@ small positive b e.g. b = 0.1 enables to allow derivatives to pass

— > generalized RelLUs to have gradient everywhere
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Generalizations of Rectified Linear Units

3 generalizations based on nonzero slope «; when z; < 0

hi = g(z,a); = max(0, z;) + a;min(0, z;)

Absolute value rectification «; = —1 and g(z) = |z|

Leaky ReLU «; a small value like 0.01

Parametric ReLU (PReLU) «; is a learnable parameter
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Maxout units

@ Maxout units divide z into groups of k values
@ For each output is the maximum element of these groups
z); = max z;

g(2); jecn
where G() is set of indices for group i, {(i — 1)k +1,..., ik}
Maxout can learn piecewise linear convex function up to k pieces
Maxout generalize rectified units further
Requires more regularization compared to rectified units

Maxout with number of elements in group and large number of examples can
work without regularization

@ Next layer can get k times smaller
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Sigmoidal Activation Functions

@ Logistic sigmoid o
o(2)

@ Hyperbolic tangent tanh

tanh(z)

sigmoid

1

T 1vexp(-2)

1 —exp(—2z)
~ 1+exp(—22)

tanh

Figure 7: Sigmoid ¢ and tanh activation functions’.

5 ] 5

sign

7 Johan Suykens. Lecture notes in Artificial Neural Networks. 2015
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Gradient-Based Learning

Sigmoidal units
e tanh(z) =20(2z) —1
sigmoid predict that a binary variable is 1
Sigmoidal units saturates large and gradient-based learning difficult

tanh is more preferable than ¢ for hidden units

Compatible with the gradient-based learning with a cost function that can
undo the saturation as output units

@ are more common in recurrent networks, many probabilistic model and
autoencoders
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Architecture Design

Architecture
@ Overall network structure
@ How many units
@ How to connect to each other
o Layer is organized groups of units
°

Mostly in a chain structure

h() = gOWOTx 4 p()
h® — g(2)(W(2)Th(1) + b(2))
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Architecture Design

Architecture
@ Main design choices
o depth of the network
e width of each layer
@ Deeper networks

o fewer units per layer
o fewer parameters
e tend to be harder to optimize

o Ideal network architecture via experimentation guided by monitoring the
validation error
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Architecture Design

@ Universal approximation theorem

o A feedforward network with a linear output
o At least one hidden layer with squashing activation function with enough

number of hidden units
e can approximate any continuous function on a closed and bounded subset of

R” with any desired (nonzero) error
@ MLP able to represent function of interest though learning not guaranteed by
the training
e optimization algorithm might fail to find the corresponding parameter values
o overfitting

17 March 2017 29 / 42
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Architecture Design

@ Universal approximation theorem and Depth

o A feedforward network with one layer can represent any function being
infeasible large

o Deeper models reduce the number of units and can reduce the generalization
error

@ The number of linear regions carved out by a deep rectifier network®

o))

where input dimension d, depth /, units per hidden layer n

@ Number of linear regions for a maxout network with k filters per unit

O(k(/71)+d)

8Guido Montiifar et al. “On the Number of Linear Regions of Deep Neural Networks”’. In:
Proceedings of the 27th International Conference on Neural Information Processing Systems -
Volume 2. NIPS'14. Montreal, Canada: MIT Press, 2014, pp. 2924-2932.
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Architecture Design

Empirically deeper networks generalize better

96.5 r r r
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5
92.0 1 1 1 1 1 1 1

Test accuracy (percent)

Figure 8: Effect of depth®.

9an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Architecture Design

T T T
e—e 3 convolutional

+—+ 3, fully connected |
95 [ V—V 11, convolutional [

93 |- \4_/—% i

Test accuracy (percent)
©
=
1
1

91 Il Il Il Il Il
0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters x108

Figure 9: Effect of number of parameters'®.

10]13n Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Forward propagation is flow from x to y
During training forward propagation continue onward until cost J(6)

backprop from cost J(#) to network backwards to compute the gradient

Numerical evaluation of analytical gradient expression computationally
expensive

Backprop makes it simple and inexpensive
@ Backprop is a method of computing gradient

@ Notation

V«f(x,¥) is the gradient of an arbitrary function f
x is a set of variable derivatives desired

y is input to function derivatives not desired
VoJ(0) is gradient of cost function
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Back-Propagation

Back-propagation

Simple Back-Prop Example

Compute loss

o
efo

doxd-yoeg

Compute activations
Forward prop
SOAT)RATIOP 9jnduo))

Figure 10: Back-propagation®!.

11an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-propagation

Computational Graphs

@ Each node a variable

A variable might be scalar, vector, matrix or tensor

°
@ An operation a simple function of one or more variables
@ Functions more complex, composed of many operations
°

directed edge from x to y indicates x used to calculate y
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Back-Propagation
Back-propagation

Examples of Computational Graphs

Multiplication Logistic regression
5
OO OO
(a) (b)

Linear regression
and weight decay

Figure 11: Computation Graphs'2.

12|an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, Eric Gaussier Multilayer Perceptrons (MLP) 17 March 2017

36 / 42


http://www.deeplearningbook.org

Back-propagation

Back-propagation is a chain rule of calculus
@ Highly efficient
@ x is areal numberand f,g : R = R, y = g(x) and z = f(g(x)) = f(y)

@ Chain rule:
dz dzdy

dx  dy dx
@ ForxeR™ yeR", g:R" - R"and f : R" - R

0z dy;
Bx, Z Jy; Ox

2%
ox

where is n X m Jacobian matrix of g
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Back-Propagation

Repeated Subexpressions

Input w e R, f :R—= R, x=f(w), y =f(x), z=1(y)

az dy Ox

8y 81 3w
) f'(w)
))f’(f(w))f'(w)

N

Back-prop avoids computing this twice

Figure 12: Repeated Subexpressions'>.

13lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Symbol-to-symbol derivatives

Algebraic and graph-based representations are symbolic representations
Symbol-to-number differentiation: Torch, Caffe
Symbol-to-symbol differentiation: Theano, Tensorflow

o

Figure 13: Symbol-to-symbol example®®.

Figure 6.10

141an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Forward Pass Fully Connected MLP

Require: Network depth, [
Require: W j e {1,...,1}, the weight matrices of the model
Require: b9, i e {1,...,1}, the bias parameters of the model
Require: x, the input to process
Require: y, the target output

hO = g

I do
a® = b(k) + w (k) p (k=1)
hk) — f(aUc))
end for
g=ho
J =LY, y) +220)

Figure 14: Forward Pass Algorithm for a MLP.

15]an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Backward Pass Fully Connected MLP

After the forward computation, compute the gradient on the output layer:

g Vg =VyL(E,y)

for k=1,l—1,...,1do
Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):
g VanJ =90 f/(a®)
Compute gradients on weights and biases (including the regularization term,
where needed):
VywdJ =g+ )\Vb(k) Q(0)
VW(k) J=g hE-DT 4 )\VW(A-)Q((Q)
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g < Vh(k—l) J= T/V(k)—r g

end for

Figure 15: Backward Pass Algorithm for a MLP.

16]an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Next Week Recurrent Neural Networks

Questions?
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