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Abstract

Self-training methods have gained significant attention in recent
years due to their effectiveness in leveraging small labeled datasets
and large unlabeled observations for prediction tasks. These models
identify decision boundaries in low-density regions without additional
assumptions about data distribution, using the confidence scores of
a learned classifier. The core principle of self-training involves iter-
atively assigning pseudo-labels to unlabeled samples with confidence
scores above a certain threshold, enriching the labeled dataset and
retraining the classifier. This paper presents self-training methods
for binary and multi-class classification, along with variants and re-
lated approaches such as consistency-based methods and transductive
learning. We also briefly describe self-supervised learning and rein-
forced self-training. Furthermore, we highlight popular applications
of self-training and discuss the importance of dynamic thresholding
and reducing pseudo-label noise for performance improvement.

To the best of our knowledge, this is the first thorough and com-
plete survey on self-training.

1 Introduction

Self-training is a branch of semi-supervised learning and has emerged as
a prominent approach within the machine learning domain, addressing the
core challenge of leveraging both labeled and unlabeled data for improved
inference. This approach is particularly valuable in scenarios where labeled
examples are scarce but there is an abundance of unlabeled data available for
training. Self-training has proven highly relevant in a range of applications,



such as computer vision, natural language processing, and speech recogni-
tion, where the acquisition of labeled data can be costly and time-consuming
93, 19, 29, 64]. By iteratively assigning pseudo-labels to unlabeled sam-
ples and retraining the classifier, self-training methods enhance the model’s
performance and generalization capabilities.

1.1  Central hypothesis

In general, it remains unclear how unlabeled data can be used in training and
what value it can bring. The basic assumption in semi-supervised learning,
called smoothness, stipulates that two examples in a high density region
should have identical class labels [14, 3]. This means that if two points
are part of the same group or cluster, their class labels will most likely be
the same. If they are separated by a low density zone, on the other hand,
their desired labels should be different. Hence, if the examples of the same
class form a partition, unlabeled training data might aid in determining the
partition boundary more efficiently than if just labeled training examples
were utilized.

1.2 Three main semi-supervised learning families

There are three main families of semi-supervised methods, each with its own
adaptation of the smoothness hypothesis. These adaptations are usually
referred to as assumptions, albeit loosely, since they rather represent different
paradigms for implementing semi-supervised learning.

Data clustering uses a mixture model and assigns class labels to groups
using the labeled data they include; and it constitutes the working principle
of generative approaches [40]. The cluster assumption, which underpins these
approaches, asserts that if two examples are in the same group, they are likely
to be in the same class (Figure 1 (a)). This hypothesis may be explained
as follows: if a group is formed by a large number of instances, it is rare
that they belong to different classes. This does not imply that a class is
constituted by a single group of examples, but rather that two examples
from distinct classes are unlikely to be found in the same cluster.

If we consider the partitions of instances to be high density areas, a form
of the cluster assumption known as low density separation entails determining
the decision boundary over low density regions (Figure 1 (b)), and it con-
stitutes the basis of discriminant techniques. The main difference between



generative and discriminant techniques is that discriminant approaches find
directly the prediction function without making any assumption on how the
data are generated [1].

Density estimation is often based on a notion of distance, which may be-
come meaningless for high dimensional spaces. A third hypothesis, known
as the manifold assumption, stipulates that in high-dimensional spaces, in-
stances reside on low-dimensional topological spaces that are locally Fu-
clidean (Figure 1 (c)), which is supported by a variety of semi-supervised
models called graphical approaches [6].
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Figure 1: Hlustration of three main hypotheses made in semi-supervised learning:
(a) cluster assumption, (b) low-density separation and (c) manifold assumption.

1.3 Compatibility

Although semi-supervised algorithms have been successfully applied in many
situations, there have been cases where unlabeled data have been shown to
have no effect on the performance of a learning task [75]. Several attempts
have been made in recent years to investigate the value of unlabeled data
in the training process [12], and the capacity of semi-supervised learning
approaches to generalize [52]. The bulk of these studies are founded on
the notion of compatibility defined by [4], and they strive to exhibit the
connection between the marginal data distribution and the target function
to be learned. According to these findings, unlabeled data will be beneficial
for training only if such a relationship exists.

In generative approaches, the marginal distribution is viewed as a mixture
of class conditional distributions, and when compared to the supervised case,



semi-supervised learning has been shown to achieve lower finite-sample error
bounds in some general cases, or a faster rate of error convergence in others
[12, 52, 75]. In this line, [7] showed that accessing the marginal distribution
on unlabeled training data would not provide sample size guarantees supe-
rior to those obtained by supervised learning unless very strong assumptions
about conditional distribution on class labels are made.

For graph-based approaches, [57] provided a context in which such algo-
rithms may be studied and perhaps justified; the key finding of the study is
that unlabeled data can help learning in some situations by explicitly defining
the structure of the data through a manifold.

Finally, discriminant approaches mostly embed a margin maximization
method that searches the decision boundary in low-density regions by pushing
it from the unlabeled data [36]. In this survey we focus on self-training algo-
rithms that follow this principle by assigning pseudo-labels to high-confidence
unlabeled training examples and include these pseudo-labeled samples in the
learning process. While various surveys have explored semi-supervised learn-
ing in recent years [83, 92], none have specifically emphasized self-training,
which has emerged as the predominant approach in the field, widely applied
across various applications.

1.4 Paper structure

The reminder of this paper is organized as follows.

In Section 2, we go over the self-training method in detail. First, we
present the framework and notations used throughout the paper in Section
2.1, then we describe the general self-training algorithm in Section 2.2, also
introduced in Algorithm 1. Then, we describe pseudo-labeling methods and
its variants in Section 2.3, and we discuss the self-training with two classifiers
in Section 2.4. Those methods are summed up in Table 1. Finally, we provide
some insights into current theoretical studies in Section 2.6.

Other related approaches are described in Section 3. First, we detail the
transductive learning context in Section 3.1, and the consistency-based ap-
proaches in Section 3.2. Going beyond traditional semi-supervised learning,
we investigate the extension of self-training in domain adaptation in Section
2.5, delve into self-supervised learning in Section 3.3, and explore reinforced
self-training in Section 3.4.

Section 4 reviews application of self-training methods in different do-
mains, such as natural language processing in Section 4.1, computer vision
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in Section 4.2 and more generally in knowledge-driven applications in Sec-
tion 4.3, with speech recognition, anomaly detection and genomics and pro-
teomics.

The views and future prospects are discussed in Section 5.

2 Self-Training

Within this section, we present the fundamental aspects of the self-training
approach. Initially, we introduce the framework and notation, followed by a
comprehensive exploration of the core concept behind the self-training algo-
rithm, which is further delineated in Algorithm 1. In Section 2.3 and Section
2.4, we present significant contributions directly linked to the standard algo-
rithm. We organize these contributions effectively in Table 1. To conclude,
we delve into the theoretical aspects in Section 2.6.

2.1 Semi-supervised framework and notations

We consider classification problems where the input and the output spaces
are respectively X C R? and ) = {—1,+1} or Y = {1,..., K}. We further
suppose available a set of labeled training examples S = (x;,¥;)1<icm €
(X x V)™ generated from a joint probability distribution P(x,y) (denoted
as D) and a set of unlabeled training examples Xy = (X;)mi1<i<cmin € X
supposed to be drawn from the marginal distribution P(x).

The classic case corresponds to when m < u, and the issue is thrown into
the unsupervised learning framework if S is empty. The opposite extreme
scenario is when X is empty and the problem is reduced to supervised
learning. Given a hypothesis set of functions H mapping X to ), the learner
receives a labeled set S and an unlabeled set X;; and outputs a hypothesis h €
H which is assumed to have a generalization error R(h) = E(x y)p[La(x)£y]
smaller than if just S was used to find the prediction function, where by 1,
we denote the indicator function equal to 1 if the predicate 7 is true and 0
otherwise.

In practice, classifiers are defined based on a scoring function f from
a class of functions F = {f : X x Y — R}, and for an example x the
corresponding classification function h outputs the class for which the score
of f is the highest:

h(x) = argmax, .y, f (X, y).



We define the margin ps(x,y) of a function f for an example x € X and
a class y € ) as

pr(x,y) = f(x,y) — max f(x,y").
y'FY
In the binary case, ) = {—1,+1}, we define the unsigned margin of a clas-
sification function f € F over an example x € X [2] as

my(x) = |ps(x, +1)].

In the multi-class classification case, Y = {1,..., K}, the unsigned margin
24] is defined as
mf(X) = Z f(X7 y)pf(X7 y)

yey

The maximization of the unsigned margin tends to find a decision boundary
that passes through low density regions and hence follows the low density
separation assumption.

2.2 Self-training: the idea

Self-training, also known as decision-directed or self-taught learning machine,
is one of the earliest approach in semi-supervised learning [70] that has risen
in popularity in recent years.

To determine the decision boundary on low density regions, the idea be-
hind self-training algorithms is to consider a pseudo-labeling strategy for
assigning pseudo-labels to the examples of X;,. This strategy can be charac-
terized by a function, called pseudo-labeler [87, 25]:

P, XX F XX

We denote y the pseudo-label of an unlabeled x € Xj, for a score function
f € F assigned by ®, and Xj; the set of pseudo-labeled examples.

The self-learning strategy is an iterative wrapper algorithm that starts
by learning a supervised classifier on the labeled training set S. Then, at
each iteration, the current classifier selects a part of the unlabeled data, X,
and assigns pseudo-labels to them using the classifier’s predictions [95].

These pseudo-labeled unlabeled examples are removed from X;; and a
new supervised classifier is trained over SU Xz, by considering these pseudo-
labeled unlabeled data as additional labeled examples. To do so, the classifier



Algorithm 1. Self-Training

Input : S = (X4, ¥i)1<i<m, Xu = (Xi)m+1<i<m+u-
k+ 0, X5 < 0.
repeat
Train f*) on S U Xy
I, + {®o(x, fM),x € Xy} © Pseudo-labeling
Xy X Ul
Xu — Xu \ {X | (X,:lj) S Hk}
E+—Fk+1
until Xuzw\/ﬂk :Q)
Output : f*, Xy, Xy

h € H that is learned at the current iteration is the one that minimizes a
regularized empirical loss over S and Xj;:

1 ~ 2
— e(h(x),y)+|;—u| > Uh(x),9) +AlA|

(x,y)€S (x,9)€Xy

where £ : ) x ) — [0, 1] is an instantaneous loss most often chosen to be the
cross-entropy loss, 7 is a hyperparameter for controlling the impact of pseudo-
labeled data in learning, and A is the regularization hyperparameter. This
process of pseudo-labeling and learning a new classifier continues until the
unlabeled set X3, is empty or there is no more unlabeled data to pseudo-label.
The pseudo-code of the self-training algorithm is shown in Algorithm 1.

2.3 Pseudo-labeling strategies

Pseudo-labeling is a crucial component of self-training methods, where a
portion of unlabeled data is selected for pseudo-labeling to avoid overfitting
to the initial classifier. In the following we will review different techniques
that have been proposed to determine the subset of examples to pseudo-label,
each with its strengths and weaknesses.

2.3.1 Threshold-Based Methods

A classical assumption, that stems from the low density separation hypoth-
esis, is to suppose that the classifier learned at each step makes the majority
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of its mistakes on observations close to the decision boundary.

In the case of binary classification, preliminary research suggested to
assign pseudo-labels only to unlabeled observations for which the current
classifier is the most confident [81]. Hence, considering thresholds 6~ and
0" defined for respectively the negative and the positive classes, the pseudo-
labeler assigns a pseudo-label ¢ to an instance x € X, such that:

. )

Y

N ES T G n
’e _17 if f(X7_1) <

and ®,(x, f) = (x,7). An unlabeled example x that does not satisfy the
conditions equation 1 is not pseudo-labeled; i.e. ®y(x, f) = 0.

Intuitively, thresholds should be set to high absolute values as pseudo-
labeling examples with low confidence would increase chances of assigning
wrong labels. However, thresholds of very high value imply excessive trust
in the confidence measure underlying the model, which, in reality, can be
biased due to the small labeled sample size. Using several iterations makes
also the situation more intricate as at every iteration the optimal threshold
might be different.

One way to select the thresholds is to set them equal to the average
of respectively positive and negative predictions [81]. In this line, and in
the context of multi-class classification [44] used Neural Networks as the
supervised classifier and chose the most confident class to infer pseudo-labels
for unlabeled data using the current model’ outputs. The pseudo-labeled
examples were then added to the labeled training set and treated similarly
as labeled examples.

These methods are simple and intuitive and they are effective in lever-
aging high-confidence predictions. However, they present a risk of assigning
wrong labels if thresholds are not set appropriately and excessive trust in the
confidence measure can be biased due to small labeled sample size.

2.3.2 Proportion-Based Methods

[100] adapted the idea of [81] for multi-class classification by not choosing
thresholds but rather fixing a proportion p of the most confident unlabeled
data to be pseudo-labeled and then increasing this proportion at each iter-
ation of the algorithm until p = 0.5 was reached. Following this idea, [11]
revisited the concept of pseudo-labeling by discussing the iterative process of



assigning pseudo-labels to unlabeled data and emphasized the resilience of
pseudo-labeling to out-of-distribution samples.

These methods are adaptive to the confidence level of the model and
reduce the risk of overfitting to low-confidence predictions. However, they
may include incorrect labels if the initial proportion is too high and generally
require careful tuning of the proportion parameter.

2.3.3 Curriculum Learning-Based Methods

These methods use curriculum learning to pseudo-label easy-to-learn obser-
vations before moving on to more complex ones. [95] proposed an adaptation
of curriculum learning to pseudo-labeling, which entails in learning a model
using easy-to-learn observations before moving on to more complex ones. The
principle is that at the step k of the algorithm, the pseudo-labeler selects un-
labeled examples having predictions that are in the (1 — ay)™ percentile of
the distribution of the maximum probability predictions assumed to follow a
Pareto distribution, and where oy, € [0,1] is an hyperparameter that varies
from 0 to 1 in increments of 0.2. Later on, [21] proposed a method that com-
bines CLIP’s text-image alignment and SAM’s mask generation capabilities,
along with a multi-source curriculum learning strategy to address noise and
excessive focus issues, gradually improving semantic alignment and segmen-
tation precision.

These approaches gradually increase the complexity of pseudo-labeled
data and reduce the risk of incorrect labels in early iterations. However they
require careful tuning of the hyperparameter a and may not be effective if
the distribution of predictions is not well-behaved.

2.3.4 Majority vote classifiers

Considering the distribution of predictions over unlabeled data, and the ma-
jority vote classifiers, such as Random Forest or Adaboost [68], it is possible
to automatically choose a threshold for pseudo-labeling.

Formally, the learning of a majority vote classifier with partially labeled
data can be defined as follows.

After observing the training set S U Xj;, the task of the learner is to
choose a posterior distribution () over a set of hypothesis H such that the
Q-weighted majority vote classifier By defined by:

Vx € X, Bo(x) = argmax,c yEi [Lni=y] »
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will have the smallest possible risk on examples of X;;. The associated Gibbs
classifier, G, is defined as the random choice of a classifier h according to
the distribution @), and its error over an unlabeled set Xj, is given by:

N 1
Ru(Gq) = ~ > Envqllazy),

x'eXy

where, for every unlabeled example X' € X, we refer to ¢/ as its true unknown
class label. For binary and multi-class classification respectively, [2] and [24]
showed that a tight upper-bound on the Gibbs classifier’s risk that holds
with high probability over the random choice of S and X, guarantees a
tight bound on the error of the Bayes classifier over the unlabeled training
set:

. 1
Ru.(Bo) = Y Lpgeeyzy-

x'e Xy

This bound is mainly based on the distribution of predictions over unlabeled
data and the derivations can be extended to bound the risk of voted majority
classifiers having margins greater than a threshold 6, R, x9(Bg), defined as:

~

1
Ru/\H(BQ) = a Z ﬂBQ(x’)#y’/\mBQ(x/)>97

x'e Xy

with a slight abuse of notation for mp,. One of the practical aspects that
arises from this result is the possibility to specify a threshold # which min-
imizes an upper-bound of the conditional risk of a voted majority classifier
B over the unlabeled training set, X;;, defined as:

A

FuntBe) = B

1 9
u erXu ]lmBQ (x)>0

where the denominator is the proportion of the unlabeled examples with the
confidence higher than the threshold 6, and the numerator is the joint Bayes
risk on X,. Thus, the criterion can be interpreted as a trade-off between the
number of examples going to be pseudo-labeled and the error they induce.
Furthermore, these bounds are shown to be tight in the case where the ma-
jority vote classifier makes its error mostly on low margin regions [25]. [24]
demonstrated that this technique outperforms conventional fixed-threshold
pseudo-labeling strategies on different multi-class classification problems.
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2.3.5 Adaptive Thresholding Methods

[15] highlighted two major issues with self-training: the snowball effects of
cascading pseudo-labeling mistakes and random sampling of tiny samples
(called data bias). The authors suggest two-phase solutions to address these
problems for image classification using deep learning. First, they proposed
a classification head to separate the creation and use of pseudo labels in
order to reduce training errors. An additional head is utilized to receive
the pseudo-labels and carry out training on unlabeled data while the default
head is used for classification and pseudo-labeling.

To address the limitations of confidence thresholding in self-training, [87]
proposed an approach by analyzing the relationship between the ideal thresh-
old and the model’s learning status. This approach adapts the confidence
threshold self-adaptively based on the model’s progress. Additionally, it
includes a self-adaptive class fairness regularization penalty to encourage di-
verse predictions during early training stages. In this line, [16] proposed a
method to address the quantity-quality trade-off in pseudo-labeling. This
approach aims to maintain both the quantity and quality of pseudo-labels
during training, thereby effectively utilizing unlabeled data. This approach
employs a truncated Gaussian function to weight samples based on their
confidence, serving as a softer alternative to the confidence threshold. Fur-
thermore, the authors introduced a uniform alignment approach to improve
the utilization of weakly-learned classes.

Dynamic adjustment of thresholds reduces the risk of incorrect labels,
and encourages diverse predictions during early training stages. However,
it requires additional computational overhead to adapt thresholds and may
introduce complexity in the training process.

2.4 Self-training with two classifiers

In the wake of works utilizing only a single classifier in self-training algo-
rithms, new studies have been proposed with the use of two classifiers, where
each model learns on the output of the other [90, 17, 39]. Most of these
techniques are based on the idea of consensus in predictions between two
classifiers and were inspired by the seminal work of [9] who proposed the
co-training algorithm.

In co-training, examples are defined by two modalities that are compa-
rable but not entirely correlated. Each view of an example is expected to
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contain complementary information about the data and if there are enough
labeled training data, each of them is supposed to be sufficient for learning.
The main principle is to learn a classifier on each view, taking initially the
available labeled examples as the training set. Then, one of the classifiers
assigns pseudo-labels to unlabeled data, and the other one uses them to re-
train the model by including them into its training set. At each iteration,
the classifiers alternately switch their roles, thereby co-training each other.
As for self-training algorithms with a single classifier, this procedure con-
tinues until there are no more unlabeled instances to be pseudo-labeled. In
practice, several studies artificially generated the two modalities for classifi-
cation problems where examples are mono-viewed and described by a vector
representation. These approaches create the two modalities out of one by se-
lecting at random the set of features that should correspond to each modality
from the initial set of features; and their efficiency was empirically proved on
various applications [79)].

Co-training and self-training share several fundamental principles. Both
methods involve iteratively assigning pseudo-labels to unlabeled data and
using these pseudo-labeled examples to improve the model. In self-training,
a single model assigns pseudo-labels based on its confidence. In co-training,
two or more models collaborate to assign pseudo-labels, with each model pro-
viding pseudo-labels for the data on which it is most confident. Furthermore,
both approaches leverage unlabeled data to enhance the performance of the
model(s) involved in training. In self-training, the model uses its own predic-
tions to generate pseudo-labels for unlabeled data. In co-training, multiple
models use their complementary strengths to generate pseudo-labels for un-
labeled data, thereby improving the overall model performance by relying on
confidence measures to select which unlabeled examples to pseudo-label. In
self-training, the model’s confidence in its predictions determines which ex-
amples are pseudo-labeled. In co-training, each model’s confidence in its
predictions determines which examples it will pseudo-label for the other
model(s). Finally, both approaches involve iterative improvement of the
model(s) through the incorporation of pseudo-labeled data. In self-training,
the model is retrained with the augmented dataset that includes pseudo-
labeled examples. In co-training, the models are retrained with the aug-
mented dataset that includes pseudo-labeled examples provided by the other
model(s).

Without splitting the input feature set, [17] proposed Cross Pseudo Su-
pervision for semantic segmentation in images. This method employs two
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Chen et al. [16]
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Table 1: A summary of principal self-training algorithms, based on pseudo-labeling with one
or two classifiers, introduced in Section 2.3 and 2.4.

neural networks as supervised classifiers having the same images as inputs.
Each neural-network is learned at every mini-batch by considering the pseudo-
labels generated by the other network for unlabeled instances as ground-
truths. In multi-task learning, [30] proposed to independently train special-
ized teachers using labeled datasets. These teachers then label an unlabeled
dataset, creating a multitask pseudo-labeled dataset. Subsequently, a stu-
dent model is trained using the pseudo-labeled dataset, employing multi-task
learning to learn from various datasets and tasks simultaneously. Finally, the
feature representations of the student model are evaluated across six vision
tasks, including image recognition, to assess its perWe ance and generaliza-
tion capabilities.

The learnability of co-training was studied under the PAC framework [82],
which also accounts for noise in the class labels of unlabeled examples caused
by pseudo-labeling. The injection of noisy labels in the pseudo-labeling step
is in fact inherent to any self-training algorithm. Taking into account noisy
labels in training a model was first considered in supervised learning, follow-
ing the paradigm of learning with an imperfect supervisor in which training
data contains an unknown portion of imperfect labels [33]. Most of these
studies tackle this problem from an algorithmic point of view, employing
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regularization or estimating mislabeling errors by modeling the transition
probability between noisy and true labels [41, 60].

Table 1 summarizes the main self-training approaches presented so far by
emphasizing their key aspects.

2.5 Self-training under Domain Shift

Recently, self-training has expanded its scope beyond semi-supervised learn-
ing and has found extensive application to the learning problems where avail-
able data is subject to a distribution shift. In unsupervised domain adap-
tation, where the objective is to transfer knowledge from a labeled source
domain to an unlabeled target one, self-training become a popular alterna-
tive to discrepancy minimization methods [28]. In this case, self-training
aims to progressively correct the domain shift by including more and more
pseudo-labeled target examples to the source training set. This is particu-
larly relevant for gradual domain adaptation, where unlabeled instances from
intermediate domains are available [72].

When intermediate domains are not given, it is important to ensure
that pseudo-labeled target examples are reliable and are not biased towards
the source data. While [100] approached this issue by carefully choosing a
pseudo-labeling policy, [67] learn a representation via a tri-training scheme,
in which the student is trained on target data pseudo-labeled by agreement
of two teachers. [49] alternate between two gradient steps: (1) to train a
source classification head that generates pseudo-labels, (2) to train a target
classification head using pseudo-labeled data under the constraint that it
predicts well on source data.

As the discrepancy between the source and the target can be large, the
prediction confidence may exhibit a strong bias failing to distinguish between
correct and wrong pseudo-labels. Therefore, several works focus specifically
on model calibration and uncertainty estimation including the Monte-Carlo
dropout [55], and prediction agreement of diversified linear heads [58].

2.6  Theoretical studies

Several studies have recently looked into the theoretical properties of self-
training algorithms.

In this line, [88] suggest a new concept of expansion defined as the quan-
tity of data dispersion in an example’s neighbor, where the term neighbor
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refers to adding adversarial perturbations [53] or augmentations [77] to the
example. The study establishes distributional guarantees of self-training
when the label distribution meets such expansion properties and classes are
suitably separated according to neighbors. The study generates finite sam-
ple bounds for Deep Neural Networks (DNNs) by combining generalization
bounds with DNN generalization bounds. Experiments with a Generative
Adversarial Network (GAN) are also used to verify the expansion assump-
tion.

[26] examine a self-training algorithm with linear models for the binary
classification using gradient-based optimization of the cross-entropy loss af-
ter supervised learning with a small number of samples. The classifier is a
mixture model with concentration and anti-concentration properties. The
authors show that utilizing O(d/€?) unlabeled observations in the self learn-
ing algorithm, with d the number of input variables, suffices to achieve the
classification error of the Bayes-optimal classifier up to an € error if the initial
pseudo-labeling strategy has a classification error smaller than an absolute
constant C,,,.. Furthermore, the authors demonstrate that a constant num-
ber of labeled examples is sufficient for optimal performance in a self-training
algorithm by demonstrating that using only O(d) labeled examples, the stan-
dard gradient descent algorithm can learn a pseudo-labeling strategy with a
classification error no more than C,,.,.

[96] study the generalization ability of self-training in the case where the
base classifier is a two-layer neural network with the second layer weights all
fixed to one, and assuming that the ground truth is realizable, the labels are
observed without noise, and the labeled and unlabeled instances are drawn
from two isotropic Gaussian distributions. The authors show that, given
some plausible assumptions about the initial point and the amount of unla-
beled training examples, the algorithm converges to the ground truth with
fewer observations than needed when no unlabeled data is provided. The
reader can refer to [98] for a broader context. [96] extend their main result
to a more general setting, where it is shown that the model still converges
towards a given convex combination of the ground truth and the initial point,
and is guaranteed to outperform the initial supervised model, without fixing
any requirement on the number of labeled training examples.

[32] propose a first bound over the misclassification error of a self-training
method which utilizes half-spaces as the base classifier in the case where class
labels of examples are supposed to be corrupted by a Massart noise model.
Under this assumption, it is shown that the use of unlabeled data in the
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proposed self-training algorithm does not degrade the performance of the
first half-space trained over the labeled training data.

[78] study the identifiability of self-training approaches. In addressing the
bias in the conventional risk estimator, the proposed method, named Inverse
Propensity Weighting, involves assigning weights to examples based on the
inverse of their propensity scores-representing the probability of a class label
being observed. The study introduces two estimators for the missing data
mechanism, one of which is derived through the maximization of the observed
likelihood. Furthermore, a likelihood ratio test is suggested to evaluate the
informativeness of the labels, determining whether they exhibit non-random
missing patterns.

Some other works studied self-training from a theoretical perspective
when a distribution shift takes place. [18] proves that self-training can help
to avoid spurious features, while [42] derived an upper-bound on the error of
self-training in the case of gradual shifts.

3 Related and unrelated approaches

In semi-supervised learning, there are two main other areas of research that
are related to self-training. The first, known as transductive learning, is based
on the low density separation assumption and tends to give class labels for
only the set of unlabeled training samples. The second method, referred
to as consistency learning, uses classifier predictions over unlabeled data as
a confidence indicator and constrains model outputs to be comparable for
similar unlabeled examples without assigning pseudo-labels.

In this section, we also go a bit further, and introduce different con-
text where self-training has been used and extended. First, we present self-
supervised learning, which, despite its similar name with self-training, is an
entirely separate technique that employs unlabeled data to train or pre-train
a model. Finally, we introduce reinforced self-training, that merges elements
of reinforcement learning with self-training principles by integrating a scoring
function based on a learned reward model and employing offline reinforce-
ment learning objectives for model fine-tuning.
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3.1 Transductive learning

The goal of transductive learning, as previously stated, is to assign pseu-
dolabels to samples from an unlabeled training set, X;,. As this set is finite,
the considered function class F, for finding the transductive prediction func-
tion, is also finite. F can be defined using a nested structure according to the
structural risk minimization principle, /3 C Fo C ... C F [84]. Transductive
techniques often employ the distribution of unsigned margins of unlabeled
examples to guide the search for a prediction function, limiting it to following
the low density separation assumption in order to find the best function class
among the current ones.

Transductive approaches also assume that the function class’s structure
should reflect prior knowledge of the learning problem at hand, and that it
should be built in such a way that the correct prediction of class labels of
labeled and unlabeled training examples is contained in a function class F; of
small size with a high probability. In particular, the Transductive Support
Vector Machines (TSVM) [36] developed for the binary case is based on
this paradigm. The approach looks for the optimal hyperplane in a feature
space that separates the best labeled examples while avoiding high density
areas. TSVM does this by building a structure on a function class F and
sorting the outputs of unlabeled samples by their margins. The solutions
to the associated optimization problem are the pseudo-labels of unlabeled
examples for which the resulting hyperplane separates the examples of both
labeled and unlabeled training sets with the largest margin.

[73] extended this idea to the multi-class classification case with Neural
Networks. Similar to TSVM, class labels of unlabeled examples are treated
as variables, and the algorithm tries to determine their optimal values, along
with the optimal NNs parameter set get by minimizing a cross-entropy loss
estimated over both labeled and unlabeled training sets through an iterative
training process. The authors employ the MinMax Feature regularization
to constrain the neural network to learn features of same-class images to be
close, and features of different classes to be separated by a preset margin, in
order to overcome incorrect label estimations on outliers and noisy samples.

Transductive learning is particularly useful in the context of proprietary
and closed APIs in natural language processing, including few-shot classifica-
tion. [20] proposed a scenario where pre-trained model embeddings are served
through a gated API with compute-cost and data-privacy constraints, and
introduces transductive inference as a solution. The authors present a new
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parameter-free transductive regularizer based on the Fisher-Rao loss, which
fully utilizes unlabeled data without sharing labels with the API provider,
and demonstrate its superiority through extensive experiments. More re-
cently, [54] studied the problem of adversarially robust learning in the trans-
ductive setting. For classes with bounded VC dimension, the authors propose
a simple transductive learner that correctly labels adversarially perturbed
test examples with a robust error rate linear in the VC dimension, providing
an exponential improvement over the best-known inductive setting bounds,
albeit with a more restrictive notion of optimal robust error.

3.2 Consistency-based approaches

Early studies in this line, see for example [99] for binary classification, were
proposed to learn a single classifier defined from a scoring function f :
X x Y — R penalized for quick changes in its predictions. The similar-

ity matrix W = [W;;]1<i<u, constructed over the unlabeled training data, is
1<isu

used to measure the similarity between instances. The penalization is mostly
expressed as a regularization term in the learning objective. As an example,
adapting the work of [99] to multi-class classification, the penalization term
can be written as:

Qw(Xu) = Wil f Kimis ) = [ Ko )P

1,j=1

where for a given example x, f(x,.) = (f(x,k))rey is the vector class pre-
dictions of f. In terms of learning, (2w can be seen as a regularization term,
constraining the model to have the same predictions on similar unlabeled
instances.

Other types of penalization have been studied in the literature. [52] sug-
gested an approach that partitions partially labeled data and then uses la-
beled training samples to identify dense clusters having predominant classes
with a fraction of non-predominant classes below a given threshold extend-
ing earlier results on supervised classification [37]. In this situation, the
proposed penalization term measures the learner’s inability to predict the
predominant classes of the identified clusters which in turn constrains the
supervised classifier to be consistent with the structure of the dense clusters.

In this line, [65] consider non-decomposable metrics with consistency reg-
ularization by giving a cost-sensitive framework that consists of minimizing
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a cost-sensitive error on pseudo labels and consistency regularization. They
demonstrate theoretically that they can build classifiers that can maximize
the required non-decomposable measure more effectively than the original
model used to produce pseudo-labels under comparable data distribution as-
sumptions.

Without explicitly stating a penalization term, consistency learning was
extended to cases with two classifiers. The Mean-Teacher approach [79] is
perhaps one of the earliest popular techniques that have been proposed in
this context. This method employs Neural Networks (NNs) as supervised
classifiers, and it is based on the assumption that two close models with
the same input should make the same prediction. One of the models is
called the teacher, while the other is referred to as the student. These two
NN models are structurally identical, and their weights are related in that
the teacher’s weights are an exponential moving average [43] of the student’
weights. In this scenario, the student model is the only one that is trained
over the labeled training set, and the consistency loss is computed between
the teacher’s probability distribution prediction and the student’s one using
the mean square error or the Kullback-Leibler divergence.

More recently, [22] provide a two-stage method to reduce label propa-
gation errors; where in the first phase, the gradients of the student loss are
computed and utilized to update the teacher. In the second stage, the teacher
assigns pseudo-labels which are then utilized to train the current student.

Also, [27] proposed a new contrastive semi-supervised learning approach
for data-efficient language modeling. The method uses hard prompts for
sentence representation and integrates prompt-based pseudo labeling with
a mask language model through a contrast loss, which pulls together sim-
ilar samples and pushes apart dissimilar ones. Additionally, mask consis-
tency training is employed to align word predictions from weak and strong
augmentations. This approach improves model generalization and leverages
unlabeled data for few-shot text classification,

3.3 Self-supervised Learning

Although similar in names, self-training is a completely different approach
than self-supervised learning which has demonstrated encouraging results
and has become an active area of research [59)].

In self-supervised learning, a model acquires the ability to make predic-
tions regarding various facets of its input data, all without the necessity
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of explicit labeled training data. Rather than depending on labeled data,
self-supervised learning harnesses the inherent structure present in the input
data and autonomously generates guidance to train the model. This proce-
dure involves the formulation of a pretext task, also referred to as a proxy
task, wherein the model is trained to make predictions concerning a specific
relationship inherent in the data. For instance, in the domain of computer
vision, a pretext task might involve rotating images within a predefined range
of angles, followed by training a supervised model to predict these angles.

Once the model has undergone training on the pretext task, the knowl-
edge it has gained in this process can be applied to downstream tasks that do
require labeled data. Consequently, by learning from extensive amounts of
unlabeled data, self-supervised learning empowers the acquisition of robust
data representations, capitalizing on the abundant, freely available unlabeled
data resources.

Common approaches in self-supervised learning include predicting the
order of shuffled image patches or their orientation [91], reconstructing cor-
rupted images [23], filling in missing words in a sentence [8], or predicting
future frames in a video sequence [69]. These pretext tasks encourage the
model to capture meaningful representations of the input data, which can
then be used for various downstream tasks, such as image classification, ob-
ject detection, or natural language processing.

3.4 Reinforced self-training

A recent innovative approach, called Reinforced self-training (ReST) has
emerged, particularly notable for its application in conditional language mod-
eling [31, 74]. This approach operates through two distinct loops: the inner
loop, called “Improve”, which concentrates on refining the policy using a
fixed dataset, and the outer loop, called “Grow”, which involves expanding
the dataset by sampling from the most recent policy.

In the domain of conditional language modeling, ReST follows a system-
atic sequence of steps. Initially, during the Grow phase, the language model
policy, originally a supervised policy, generates multiple output predictions
for each context, thereby enriching the training dataset. Subsequently, in the
Improve stage, the expanded dataset undergoes ranking and filtering using
a scoring function. The language model then undergoes fine-tuning on the
refined dataset using an offline reinforcement learning objective, with the po-
tential for repeating this process with an increasing filtering threshold. The
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resultant policy from this iterative process is subsequently employed in the
following Grow phase.

ReST may find niche suitability in specific applications or scenarios where
reinforcement learning principles enhance model performance through learned
reward signals. In contrast, classical self-training techniques possess a broader
applicability and have been employed across a wide spectrum of semi-supervised
learning tasks without necessitating reinforcement learning frameworks.

4 Applications

In this section, we will concentrate on the most popular applications where
self-training was employed, although this technique may be extended and
used to a variety of additional machine learning tasks. The goal of our
presentation here is not to be thorough, but rather to focus on the main
features of self-training that were used in the literature among the selected
applications.

4.1 Natural Language Processing

Co-training is perhaps one of the preliminary self-training techniques which
was applied to web pages classification [9]. In the paper, the content of a web
page has been divided into two sets of words: those that appear on the page
and those that appear in hyperlinks pointing to the page. The main hypoth-
esis here is that each of the set of words contain sufficient information for
the classification task and that there are enough labeled data to efficiently
learn two supervised classifiers. Both theoretical and empirical studies of
co-training show that if examples have two redundant but not entirely corre-
lated views, then unlabeled data may be used to augment the original labeled
training data to find more robust classifiers. However, the drawback of this
strategy is that in general, text data is mono-view. For bag-of-word repre-
sentation of texts, a solution was to split the set of words in two random sets,
considered as two distinct views of a text [56], as mentioned in Section 2.4.
However, this idea cannot be generalized to sequential models that could be
used as base classifiers in co-training.

Other current self-training techniques in NLP are mostly built on the
concept of co-training and employ two base classifiers that are learned over
each other’s predictions. In this line, [89] proposed a Named Entity Recogni-
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tion (NER) strategy that consists in automatically detecting and classifying
named entities, with a first NER model trained on labeled training data
serving as a teacher to predict the probability distribution of entity labels
for each token in the unlabeled set. The pseudo-labeled data with such soft
labels are then used to train a student NER model for the unlabeled set and
the process of pseudo-labeling and training is repeated until convergence as
in co-training. For the task of Relation Extraction (RE) which consists in
obtaining a predefined semantic relation between two entities in a given sen-
tence, [93] proposed an approach which classifies the pseudo-labeled instances
generated from a teacher into confident, ambiguous and hard sets. In the
training of the student model, the confident and ambiguous instances are
subsequently interpreted as positive and set-negatives observations, respec-
tively. Based on these ideas, [50] proposed several self-training methods for
NLP, demonstrating that neural language models can be enhanced through
synthetic data generation strategies such as pseudo-labeling, prototypical la-
bel embeddings, and synthetic text generation. These methods were shown
to significantly improve performance in tasks like dialog response retrieval,
dialog policy learning, and question answering, achieving state-of-the-art re-
sults and reducing dependence on human annotation.

Lately [97] proposed a self-training approach that reduces the annotation
cost for structured label spaces using active learning. The method leverages
partial annotation by selecting only the most informative substructures for
annotation and incorporates the model’s automatic predictions as pseudo-
labels for unannotated sub-structures. By employing an error estimator to
adaptively decide the partial selection ratio, the approach effectively com-
bines partial annotation with self-training, reducing annotation cost across
four structured prediction tasks compared to strong full annotation baselines.

4.2 Computer Vision

As in NLP, the two variants of self-training with one or two classifiers, mainly
referred to as student and teacher in the literature, are mainly considered for
image classification. Most recent approaches use neural networks as base
classifiers and rely on these models’ ability to learn efficient representations
of images, proposing various strategies to either improve the representation
or reduce the effect of noise injection during the pseudo-labeling phase of
self-training.

The most common strategy with student and teacher base classifiers is
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arguably the one proposed by [90], in which an EfficientNet model trained
on labeled ImageNet images is used as a teacher to create pseudo labels on
unlabeled ones. A larger EfficientNet is subsequently employed as a stu-
dent model, being trained on a mix of labeled and pseudo-labeled images.
This training involves altering the input images using various techniques
like dropout, stochastic depth, and data augmentation. The objective is for
the model to learn a representation of images that remains consistent de-
spite these alterations. This procedure is repeated by reversing the roles of
the student and the teacher. The input of the teacher model is not altered
throughout the training process. The main motivation advanced is to ensure
that the pseudo labels be as accurate as possible. Empirical evidence from
various image collections demonstrates the effectiveness of this strategy.

[77] proposed a self-training approach called FixMatch that combines
consistency regularization with a confidence-based mechanism to select high-
confidence pseudo-labeled examples for training. The algorithm applies to
the same image two different data augmentations procedures, called weak
(flip-and-shift) and strong (more heavy distortions) augmentations.

As in the previous case, these perturbations helps to increase diversity
and improve the model’s robustness on the unlabeled images. The authors
introduce a consistency loss term that encourages the consistency between
the model’s hard output of the weakly-augmented version and the model’s
soft output of the strongly-augmented version of the same unlabeled image.
They demonstrate that the model learns to provide more trustworthy and
accurate results by minimizing the discrepancy between these predictions. In
order to decrease the influence of possibly inaccurate pseudo-labels on the
learning process, the loss is evaluated only on those unlabeled data from the
batch that have the confidence higher than a fixed threshold.

This idea has then been adapted to various correlated tasks, including
object detection, image segmentation [19], remote sensing [35] and video
anomaly detection [51], among others. [15] proposed an improvement of
FixMatch by introducing two novel features. First of all, they introduce a
separate classification head that is used to assign pseudo-labels and trained
using labeled data only in order to avoid possible label noise from wrong
pseudo-labels. Secondly, they improve the feature learning by introducing
an adversarial classification head whose goal is to approximate the worst
possible error on unlabeled data. All these approaches employ a constant
predefined threshold across all classes to choose unlabeled data for training,
disregarding varying learning conditions and complexities among different
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classes.

To tackle this concern, [95] introduced a curriculum learning technique to
utilize unlabeled data based on the model’s learning progress. The essence
of this strategy involves dynamically adapting thresholds for distinct classes
during each time step, enabling the inclusion of insightful unlabeled data
and their corresponding pseudo-labels. This approach has been successfully
applied to many domains, including object detection [46], medical image
classification [62], human action recognition [85] and facial expression iden-
tification [71].

4.3 Knowledge-driven applications

Through the incorporation of domain expertise, recent studies have developed
more sophisticated self-training systems that reduce label noise in the pseudo-
labeling phase across diverse applications. In the subsequent sections, we will
consider advances made in this context in the domains of speech recognition,
anomaly detection, genomics and proteomics.

4.3.1 Speech Recognition

Newly developed methods have introduced filtering mechanisms that are con-
gruent with domain knowledge for end-to-end speech recognition. These
mechanisms establish rules that assess pseudo-labels using criteria specific to
the domain. For example by using filters to verify if certain phonetic pat-
terns that are common in the domain, are present in the pseudo-labels [29].
Similar techniques incorporate phonetic information relevant to the domain
to validate pseudo-labels. In these approaches, incorrectly labeled examples
that violate phonetic constraints are discarded from training the model [48].

Other approaches integrate domain-specific language models in the the
pseudo-label generation process in order to ensure that the generated labels
adhere to the linguistic nuances and terminologies of the domain. In this
line, [38] introduced a self-training approach, with one base classifier com-
bined with a language model for pseudo-labeling. Their approach involves
implementing tailored filtering methods designed to address common errors
arising from sequence-to-sequence models, alongside an inventive ensemble
technique for enhancing the breadth of pseudo-label variations. Furthermore
[76] presents a self-training approach for automatic speech recognition in
low-resource settings, specifically focusing on the Punjabi language. The pro-
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posed method generates highly accurate pseudo-labels for unlabeled Punjabi
speech, resulting in a significant improvement in word error rate compared
to state-of-the-art approaches.

As in image classification, alternative methods for speech recognition ap-
ply data-augmentation techniques, tailored to the unique aspects of the do-
main, to enhance the robustness of the model’s predictions and consequently
the quality of pseudo-labels. In this sense, [5] employed a text-to-speech
system to generate audio training data from text-only sources.

4.3.2 Anomaly Detection

Leveraging domain knowledge to mitigate label noise in pseudo-labels within
self-training approaches has also been considered in anomaly detection. In
this case, the understanding of the anomaly patterns and characteristics spe-
cific to the domain are incorporated in the model. In this regard, [64] iden-
tified common anomaly types, their features and potential sources of noise
and performed time domain analysis. Also, [80] proposed a method for video
anomaly detection that employs an unsupervised approach using isolation
trees and deep features. The method generates initial anomaly and dynam-
icity scores, which are refined using a cross-branch feed-forward network
based on the I3D architecture. It then incorporates a self-training strategy
to iteratively improve the model’s performance by pseudolabeling and re-
training on the most confident samples, achieving competitive accuracy on
popular datasets like UCF-Crime, CCTV-Fights, and UBI-Fights. This ap-
proach combines appearance and motion information to enhance the quality
of anomaly evidence, making it more practical for real-world applications
where annotation is burdensome. Alternate strategies focus on simulating
anomalies within the unlabeled dataset using domain knowledge. This aids
the model in learning from a broad spectrum of anomalies, mitigating the
potential of becoming overly specialized in a particular anomaly type [63].
[47] also proposed a weakly supervised Video Anomaly Detection approach
using Multi-Sequence Learning (MSL) and a hinge-based MSL ranking loss to
reduce selection errors by optimizing sequences of snippets. The method em-
ploys a Transformer-based MSL network to learn video-level and snippet-level
anomaly scores, refining them through a self-training strategy that gradually
reduces sequence length. This approach achieves significant improvements
on datasets like ShanghaiTech, UCF-Crime, and XD-Violence.
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4.3.3 Genomics and proteomics

Furthermore, datasets in the field of genomics and proteomics encompass a
variety of characteristics including gene expression levels, epigenetic markers,
and genetic variants. These characteristics have been shown to increase the
effectiveness of features used in self-training approaches, together with the
selection of important features and their physiologically coherent transfor-
mation.

[10] incorporated biological context into feature engineering that inte-
grate unsupervised modeling of datasets relating to human disease with the
supervised component that concentrated on training with mouse data. In
this context, [66] amalgamated expression data from three distinct human-
ized mouse models that were subjected to live attenuated yellow fever vaccine
challenges in self-training with different base classifiers. The results of this
study show that self-training coupled with NRG-HIS/Fluc mice exhibited
the most favorable outcomes across the tested human cohorts.

[45] proposed a self-training subspace clustering algorithm based on adap-
tive confidence for gene expression data. The proposed algorithm enhances
the discriminative property of gene expression data using low-rank repre-
sentation with distance penalty and introduces a semi-supervised clustering
objective function with label confidence. To mitigate the negative impact of
mislabeled data, an adaptive adjustment strategy based on the gravitational
search algorithm is employed.

[34] applied domain-specific quality control steps to clean and pre-process
the data. This included filtering out low-quality samples, normalizing data
to account for technical biases, and addressing batch effects that can in-
troduce noise. By doing so, they ensured that the unlabeled data that is
feed into the self-training pipeline is as accurate as possible. [13] utilized
reference databases and annotation resources related to genomics. These re-
sources provide information about genes, functional elements, pathways, and
biological processes. Incorporating this information into the pseudo-labeling
process has been shown to lead to more accurate predictions by aligning them
with known biological knowledge. [94] applied network analysis techniques to
identify interactions between genes and proteins. The authors demonstrated
that Pathway enrichment analysis can help identify genes that are function-
ally related and likely to be co-regulated. This information has been shown
to guide the self-training process to produce more coherent and biologically
plausible pseudo-labels.
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General observations The key observations made in these applications re-
veal that, in pseudo-labeling, employing fixed thresholds often yields sub-
optimal outcomes, underscoring the importance of dynamic thresholding for
optimal results. Furthermore, enhancing pseudo-label noise improves both
generalization and class differentiation. In Appendix A, we will show the im-
pact of dynamic thresholding on pseudo-labeling across general benchmarks
and examine the noise considerations in two image classification collections
studied in [15].

5 Conclusion, Limitations and Perspectives

In this survey, we provided an overview of self-training approaches for semi-
supervised learning that have received increasing attention in recent years.

First, we discussed the various strategies for selecting unlabeled samples
for pseudo-labeling that have been proposed. We emphasized the significance
of considering margin distributions across unlabeled data as a pivotal fac-
tor in the development of these strategies. Next, we provided an overview
of the diverse variants of self-training explored in the literature, along with
relevant approaches. Furthermore, we examined recent theoretical advance-
ments in this research domain and outlined the principal characteristics of
self-training employed in several widely recognized applications. Lastly, we
explored the impact of fundamental aspects of self-training on a range of
benchmark datasets.

Limitations Despite the promising results and widespread adoption of self-
training, several limitations remain. One significant challenge is the sensitiv-
ity of self-training methods to the quality of pseudo-labels. Incorrect or noisy
pseudo-labels can propagate errors through the training process, leading to
suboptimal performance. Additionally, the effectiveness of self-training can
be highly dependent on the initial labeled dataset. If the initial dataset is
not representative or is too small, the self-training process may not yield
significant improvements.

Another limitation is the computational cost associated with iterative
pseudo-labeling and retraining. Self-training methods often require multiple
iterations, which can be time-consuming and resource-intensive, especially
for large-scale datasets. Furthermore, the selection of appropriate thresholds

27



for pseudo-labeling remains a critical and often challenging task, as it requires
a delicate balance between the quantity and quality of pseudo-labels.

Future Work To address these limitations, future research should focus on
developing more robust and efficient self-training algorithms. This could
involve exploring adaptive thresholding techniques that dynamically adjust
the confidence thresholds based on the model’s learning status. Additionally,
incorporating uncertainty quantification methods to estimate the reliability
of pseudo-labels could help mitigate the impact of noisy labels.

Another promising direction is the integration of self-training with other
semi-supervised learning techniques, such as consistency regularization and
multi-view training, to leverage their complementary strengths. Further-
more, extending self-training to new domains, such as medical imaging and
industrial time-series data, could open up new avenues for practical applica-
tions.

While the self-training approach is currently in widespread use, there are
extensive opportunities for future research. Presently, the majority of studies
have concentrated on perturbation-based deep learning, particularly in the
domains of visual, text, and audio applications. However, there exist numer-
ous other domains, such as industrial time-series or medical data, where the
application of self-training could prove highly beneficial.

Also, recent research emphasizes the potential of exploring self-training
methods from a theoretical standpoint, particularly in addressing the chal-
lenge of training a final classifier on data with noisy labels [32]. It has also
been demonstrated that accurately estimating the confidence of pseudo-labels
is crucial for effective self-training [58]. Therefore, theoretically establishing
the correlation between performance and the level of uncertainty in pseudo-
labeling could be a valuable direction for future research, especially in analyz-
ing self-training within the context of learning problems affected by domain
shifts.
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A Empirical Study

In this section, we will evaluate the effectiveness and performance of the self-
training algorithm. This assessment will focus on two key features discussed
in the preceding sections: the handling of noise in the pseudo-labeling phase
and the impact of threshold selection. Our primary focus will be on scenarios
with sufficient labeled training data, allowing for the development of an initial
supervised complex model, and scenarios with severely limited labeled train-
ing data, where using complex baseline classifiers like deep learning models
is not feasible.

A.1 Noise Account

We first consider the case where the initial labeled training set allows to train
deep neural networks and examine the effects of taking into account noise in
the pseudo-labeling process along with the dynamic selection of the threshold
on CIFAR-10 and CIFAR-100 [86]. Both datasets contain 32x32 pixel RGB
images belonging to respectively 10 and 100 classes; 50000 examples are used
for training and 10000 samples for test.

We consider the debiased self-training approach (DST) [15] to address
the presence of noise in pseudo-labeling, in conjunction with the FlexMatch
method [95] for the dynamic threshold determination in pseudo-labeling. As
outlined in Section 2.3, DST involves training a dedicated head on pseudo-
labeled examples, allowing the model to implicitly capture and account for
noise inherent in the pseudo-labels.

For FlexMatch, we followed the same experimental protocol than [95].
In this case, Wide ResNet (WRN) was used as the base classifier in self-
training. Parameter learning was accomplished using stochastic gradient
descent (SGD) with a momentum coefficient of 0.9. The initial rate was set to
no = 0.03 with a cosine learning rate decay schedule as n = 1y cos(77t/16T),
where t denotes the current training step and 7' is the total training step
set at 229, Additionally, exponential moving averaging with a momentum of
0.999 was implemented and the batch size for labeled data was fixed to 64.
For DST, we used the code made available by the authors!.

We compared FlexMatch with and without the DST approach denoted
respectively by FM and FM+DST. We also compared self-training with WRN

Thttps://github.com/thuml/Debiased-Self-Training

40



trained in fully supervised manner. Each experiment was repeated 5 times
by changing the seed at each time. Figure 2 presents the average accuracy
of different models on the test set for the same number of initial labeled
training samples per class within the set {4, 10,20,50} for both datasets. In
both datasets, considering label noise within pseudo-labels leads to improved
performance, with the improvement being more pronounced in the case of

CIFAR-100.

CIFAR-10 CIFAR-100
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Figure 2: Comparisons in terms of Accuracy on CIFAR-10 and CIFAR-100 for a
varying number of labeled training data. “Supervised” refers to the fully supervised
learning (m = 50000, u = 0).

In CIFAR-100, classes are structured into 20 superclasses, each compris-
ing 5 related classes, addressing noise in this more complex task aids in class
differentiation and enhances the model’s ability to generalize. It is worth
noting that with a greater number of initial labeled training examples, the
gap between the FM and FM+DST approaches narrows, as the model be-
comes more proficient with the increased labeled data and makes fewer errors
in pseudo-labeling.

A.2 The impact of threshold selection

We now study the effect of selecting automatically the threshold for pseudo-
labeling on 9 publicly available data sets proposed for semi-supervised learn-
ingZ. The characteristics of these datasets are presented in Table 2. It is
worth noting that certain datasets contain only a limited number of labeled

training examples, comprising just a few hundred instances and accounting

Zhttps://archive.ics.uci.edu/ml/index.php
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for less than 1% of the total training examples. This condition underscores
the suitability of employing complex base classifiers.

# of labeled examples # of unlabeled examples Dimension # of classes

Data set m u d K
Vowel 99 891 10 11
Protein 129 951 7 8
PageBlocks 1094 4379 10 5
Isolet 389 7408 617 26
HAR 102 10197 561 6
Pendigits 109 10883 16 10
Letter 400 19600 16 26
Fashion 175 69825 784 10
MNIST 175 69825 784 10

Table 2: Characteristics of data sets used in our experiments, d and K correspond
to respectively the dimension of the input space and the number of classes.

In the experimentation, Random Forest was employed instead using the
scikit-learn implementation [61] with 200 trees of maximum depth while leav-
ing other parameters at their default values. The primary objective was to as-
sess and contrast the classifier’s performance in two scenarios: the supervised
scenario (denoted by RF) and the self-training scenario where pseudo-labeling
is automatically conducted following the approach introduced by [24]3 (de-
noted by PL*). Additionally, we investigated the impact of setting the
pseudo-labeling threshold at predefined values from the set # € {0.5,0.7,0.9}
(denoted by PLy).

The automatic pseudo-labeling strategy selects the threshold which min-
imizes the bound of the error of the Random Forest classifier over the unla-
beled training samples.

Results are resumed in Table 3. Experiments are repeated 20 times by
choosing randomly the labeled training examples, and * indicates that per-
formance is statistically worse than the best result, shown in bold, according
to the Wilcoxon rank-sum test.

These results suggest that the effectiveness of self-training heavily relies
on the method used to determine the pseudo-labeling threshold. When the
threshold is automatically determined, self-training (i.e. PL* ) can perform

3https://github.com/vfeofanov/trans-bounds-maj-vote
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Dataset |  RF PLy—os PLy_o7 PLy—o9 PL*

Vowel | .586 &£ .028 .489'+ .016 531+ .034 .576*+ .028 586 £ .026
Protein | .764%+ .032 .653'4 .024 687+ & .036 .724* & .018 781 & .034
PageBlocks | .965 +.003 .931*% .003 964 4 .004 .965 +.002 .966 £ .002
Isolet | 85444+ .016 .648*+£.018 .7v+£ .04 861 +.08 875 % .014
HAR | 851 £.024 .76+ .04  81%+ 041 823"+ 035 .854 + .026
Pendigits | 863+ .022 .825%+ .022 .839'+ .036 845+ .024 .884 £ .022
Letter | 711+ 011 .062'4 .011 6514+ .015 .673 *+ .015 .717 + .013
Fashion | 718 £.022 .625'%+ .014  .64'+ .04 .68+ 014 723 £+ .023
MNIST | .798%+ .015 .665'% .012 .705'+ .055 .823'+ .045 .857 £ .013

Table 3: Classification performance using the accuracy score on 9 publicly available
data set. Best results are shown in bold and the sign + shows if the performance
is statistically worse than the best result on the level 0.01 of significance.

competitively, indicating that this approach has the potential to improve
results compared to the supervised RF.

However, when a fixed threshold is applied, self-training tends to yield
inferior results compared to the supervised learning approach. This sug-
gests that an arbitrarily chosen threshold might not effectively capture the
underlying patterns in the data for the pseudo-labeling process, leading to
suboptimal performance.

Moreover, when the threshold is too low as for § € {0.5,0.7}, pseudo-
labeling is likely to produce label noise and degrade the performance of self-
training with respect to the supervised RF classifier in all cases. When the
threshold it is too high (i.e. 6 = 0.9), self-training becomes competitive
compared to RF on Isolet and MNIST, but the quantity of pseudo-labeled
unlabeled examples seems not to be sufficient to learn efficiently.

In summary, the findings emphasize the importance of a dynamic and
adaptive threshold selection mechanism when implementing self-training.
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