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Abstract

Traditional statistical learning theory relies on the assumption that
data are identically and independently distributed (i.i.d.). However, this
assumption often does not hold in many real-life applications. In this
survey, we explore learning scenarios where examples are dependent and
their dependence relationship is described by a dependency graph, a com-
monly utilized model in probability and combinatorics. We collect various
graph-dependent concentration bounds, which are then used to derive
Rademacher complexity and stability generalization bounds for learning
from graph-dependent data. We illustrate this paradigm through practi-
cal learning tasks and provide some research directions for future work.
To our knowledge, this survey is the first of this kind on this subject.

Keywords: Generalization bounds, dependency graphs, uniform stability,
Rademacher complexity, bipartite ranking

1 Introduction

The central assumption in machine learning is that observations are indepen-
dently and identically distributed (i.i.d.) with respect to a fixed yet unknown
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probability distribution. Under this assumption, generalization error bounds,
shedding light on the learnability of models or conducting in the design of
advanced algorithms (Boser et al, 1992), have been proposed. However, in
many real applications, the data collected can be dependent, and therefore the
i.i.d. assumption does not hold. There have been extensive discussions in the
community on why and how the data are dependent (Dehling and Philipp,
2002; Amini and Usunier, 2015).

Learning with interdependent data. Establishing generalization theories
under dependent settings have received a surge of interest in recent years
(Mohri and Rostamizadeh, 2008, 2009; Ralaivola et al, 2010; Kuznetsov and
Mohri, 2017). A major line of research in this direction models the data depen-
dencies by various types of mixing models, such as α-mixing (Rosenblatt,
1956), β-mixing (Volkonskii and Rozanov, 1959), ϕ-mixing (Ibragimov, 1962),
and η-mixing (Kontorovich, 2007), and so on. Mixing models have been used
in statistical learning theory to establish generalization error bounds based
on Rademacher complexity (Mohri and Rostamizadeh, 2009, 2010; Kuznetsov
and Mohri, 2017) or algorithmic stability (Mohri and Rostamizadeh, 2008,
2010; He et al, 2016) via concentration results (Kontorovich and Ramanan,
2008) or independent block technique (Yu, 1994). In these models, the mixing
coefficients quantitatively measure the dependencies among data. Another line
of work, referred to as decoupling, studies the behavior of complex systems
by decomposing a set of dependent random variables into sets of indepen-
dent variables and a set of dependent variables with vanishing moments (Peña
and Giné, 1999). A random variable with vanishing moments has a property
that its expected value converges to zero as the number of terms increases.
This technique of decoupling has been successfully applied in many areas of
mathematics, statistics, and engineering.

Dependency graphs. Although the results based upon the mixing model
and decoupling with vanishing moments are fruitful, they face difficulties in
practical applications, as it is usually difficult to determine or estimate the
quantitative dependencies among data points (such as the mixing coefficients
or the vanishing moments) unless under some restrictive assumptions. On the
other hand, determining whether two data are dependent or exhibit a suitable
dependency structure is often much easier in practice. Thus in this paper, we
focus on such a qualitative dependent setting. We use graphs as a natural tool
to describe the dependencies among data and establish generalization theory
under such graph-dependence. The dependency graph model we use has been
widely utilized in many other fields, in particular, in probability theory and
statistics, where it is used to prove normal or Poisson approximation using
Stein’s approach, cumulants, and so on (see, for example, Janson 1988, 1990).
It is also heavily used in probabilistic combinatorics and statistical physics,
such as Lovász local lemma (Erdős and Lovász, 1975), Janson’s inequality
(Janson et al, 1988), along with many others.
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Rademacher bounds Stability bounds
i.i.d. Bartlett and Mendelson (2002) Bousquet and Elisseeff (2002)

mixing conditions Mohri and Rostamizadeh (2009) Mohri and Rostamizadeh (2008)
graph-dependence Theorem 3.5 (Amini and Usunier 2015) Theorem 3.12 (Zhang et al 2019)

Table 1: Rademacher complexity and stability generalization bounds for i.i.d.,
mixing, and graph-dependent setting.

Rademacher complexity. We collect various concentration bounds under
graph-dependence and utilize them to derive Rademacher and stability gen-
eralization bounds for learning from dependent data. The basic tool used to
establish generalization theory is concentration inequalities. Standard concen-
tration results for the i.i.d. case no longer apply for dependently distributed
data, making the study a challenging task. Janson (2004) extended Hoeffding’s
inequality to the sum of dependent random variables. This result bounds the
probability that the summation of graph-dependent random variables deviates
from its expected value, in terms of the fractional chromatic number of the
dependency graph. Our first approach uses a similar idea, by dividing graph-
dependent variables into sets of independent ones, we establish concentration
bounds based on fractional colorings, and generalization bounds via fractional
Rademacher complexity.

Algorithmic stability. PAC-Bayes bounds for classification with non-i.i.d.
data have also been obtained based on fractional colorings of graphs in
Ralaivola et al (2010). These results also hold for specific learning set-
tings such as ranking and learning from stationary β-mixing distributions.
Ralaivola and Amini (2015) established new concentration inequalities for frac-
tionally sub-additive and fractionally self-bounding functions of dependent
variables. Though fundamental and elegant, the above generalization bounds
are algorithm-independent. They consider the complexity of the hypothesis
space and data distribution, but do not involve specific learning algorithms.
To derive better generalization bounds, there is growing interest in developing
algorithm-dependent generalization theories. This line of research heavily relies
on the notion of algorithmic stability, which exhibits a key advantage, that
is, they are tailored to specific learning algorithms, exploiting their particular
properties. Our second approach utilizes algorithmic stability to establish gen-
eralization bounds. Note that even under the i.i.d. assumption, Hoeffding-type
concentration inequalities, which bound the deviation of sample average from
expectation, are not strong enough to prove stability-based generalization. On
the contrary, McDiarmid’s inequality characterizes the concentration of gen-
eral Lipschitz functions of i.i.d. random variables, hence is used as the key
tool for proving the stability bounds. Therefore, to build algorithmic stabil-
ity theory for non-i.i.d. samples, we start with McDiarmid-type concentration
bounds for graph-dependent random variables.

Table 1 lists some generalization results using Rademacher complexity
and algorithmic stability for i.i.d., mixing, and graph-dependent settings,
respectively.
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Paper organization. In this survey, we begin with introducing different
McDiarmid-type concentration inequalities for functions of graph-dependent
random variables. Then we utilize these concentration bounds to provide upper
bounds on generalization error for learning from graph-dependent data using
Rademacher complexity and algorithm stability. In the reminder, Section
2 introduces notation and the framework. Section 3 establishes fractional
Rademacher complexity and algorithmic stability bounds. Section 4 shows how
the presented framework can be utilized to derive generalization bounds for
learning from graph-dependent data in a variety of practical scenarios, includ-
ing learning-to-rank, multi-class classification problems, and learning from
m-dependent data. We finally conclude this work in Section 5 and provide
some perspective and future work.

2 Notation and framework

Throughout this paper, for all positive integer n, let [n] denote the integer
set {1, 2, . . . , n}. Given two integers i < j, let [i, j] denote the integer set
{i, i+1, . . . , j−1, j}. Let Ωi be a Polish space for every i ∈ [n], Ω =

∏
i∈[n] Ωi =

Ω1 × . . .× Ωn be the product space, R be the set of real numbers, and R+ be
the set of non-negative real numbers. Let ∥ · ∥p denote the standard ℓp-norm
of a vector. We use uppercase letters for random variables, lowercase letters
for their realizations, and bold letters for vectors.

2.1 Graph-theoretic notation

We use the standard graph-theoretic notation. All graphs considered are finite,
undirected, and simple (no loops or multiple edges). A graph G = (V,E)
consists of a set of vertices V , some of which are connected by edges in E.
Given a graph G, let V (G) be the vertex set and E(G) be the edge set. The
edge connecting a pair of distinct vertices u, v is denoted by {u, v}, which is
assumed to be unordered. The number of edges incident on a vertex is the
degree of the vertex; and we use ∆(G) to denote the maximum degree of graph
G.

2.1.1 Graph covering and partitioning

Formally, given a graph G, we introduce the following definitions.
(a1) A family {Sk}k of subsets of V (G) is a vertex cover of G if

⋃
Sk = V (G).

(a2) A vertex cover {Sk}k of G is a vertex partition of G if every vertex of G
is in exactly one element of {Sk}k.

(a3) A family {(Sk, wk)}k of pairs (Sk, wk), where Sk ⊆ V (G) and wk ∈ [0, 1]
is a fractional vertex cover of G if {Sk}k is a vertex cover of G, and∑

k:v∈Sk
wk = 1 for every v ∈ V (G).

(a4) An independent set of G is a set of vertices of G, no two of which are
adjacent in G. Let I(G) denote the set of all independent sets of graph G.

(a5) A fractional independent vertex cover {(Ik, wk)}k of G is a fractional
vertex cover such that Ik ∈ I(G) for every k.
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(a6) A fractional coloring of a graph G is a mapping g from I(G) to [0, 1]
such that

∑
I∈I(G):v∈I g(I) ⩾ 1 for every vertex v ∈ V (G). The fractional

chromatic number χf (G) of G is the minimum of the value
∑

I∈I(G) g(I)
over fractional colorings of G. See Figure 1 for an example.

Note that the fractional chromatic number χf (G) of graph G is the min-
imum of

∑
k wk over all fractional independent vertex covers {(Ik, wk)}k

of G (see, for example, Janson 2004).

Fig. 1: A fractional coloring of a cycle graph C5 of length 5 with patterns
indicating different colors. The set of pairs {({i, (i+ 3)(mod 5)}, 1/2)}1⩽i⩽5 is
a fractional vertex cover with the fractional chromatic number 5/2.

(a7) Let H be a graph and {Hx ⊆ V (G)}x∈V (H) be a set of subsets of V (G)
indexed by the vertices of H. Each set Hx is called a ‘bag’. The pair
(H, {Hx}x∈V (H)) is an H-partition of G if:

(i) {Hx}x∈V (H) is a vertex partition of G.
(ii) Distinct u and v are adjacent in H if and only if there is an edge

of G with one endpoint in Hu and the other endpoint in Hv.
In graph theory, a vertex identification (also called vertex contraction)

is to contract a pair of vertices u and v of a graph and produces a graph
in which the two vertices u and v are replaced with a single vertex t such
that t is adjacent to the union of the vertices to which u and v were
originally adjacent. Note that in vertex contraction, it does not matter if
u and v are connected by an edge; if they are, the edge is simply removed
upon contraction, this special case of vertex identification called edge
contraction.

Informally speaking, an H-partition of graph G is obtained from a
proper partition of V (G) by identifying the vertices in each part, deleting
loops, and replacing parallel edges with a single edge. H is also called the
quotient graph of the graph G. For brevity, we say H is a partition of G.
For more about partitions of graphs, see, for example, Wood 2009.

(a8) A tree is a connected, acyclic graph, and a forest is a disjoint union of
trees. For a given forest F , we denote the set of (vertex sets of) disjoint
trees in forest F as T (F ).
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(a9) If forest F is a partition of graph G, then the pair (F, {Fx ⊆ V (G)}x∈V (F ))
is a tree-partition of G. The set of all tree-partitions of graph G is denoted
by TP(G). See Figure 2 for an example.

Tree-partitions were independently introduced by Seese (1985) and
Halin (1991), and have since been widely investigated (Wood, 2009).
Essentially, a tree-partition of a graph is a proper partition of its vertex
set into ‘bags’, such that identifying the vertices in each bag produces a
forest.

1

2
4

6

5

3

G H

h1 h2 h3

Fig. 2: A tree-partition of graph G is (H, {{1, 2}, {3, 4}, {5, 6}}), where H is
a path on vertices {h1, h2, h3}, which correspond to vertex sets {1, 2}, {3, 4},
and {5, 6} respectively.

2.2 Probabilistic tools

Concentration inequalities are fundamental tools in statistical learning theory.
They bound the deviation of a function of random variables from some value
that is usually the expectation. Among the most powerful ones is McDiarmid’s
inequality (McDiarmid, 1989), which establishes sharp concentration for mul-
tivariate functions that do not depend too much on any individual coordinate,
specifically, when the function satisfies c-Lipschitz condition for a weighted
hamming distance (bounded differences condition).

Let 1{A} denote the indicator function for any event A, that is, 1{A} = 1 if
A occurs, otherwise, 1{A} = 0. We first introduce the definition of a Lipschitz
function.

Definition 2.1 (c-Lipschitz). Given a vector c = (c1, . . . , cn) ∈ Rn
+, a function

f : Ω → R is c-Lipschitz if for all x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) ∈ Ω,

we have

|f(x) − f(x′)|⩽
n∑

i=1

ci1{xi ̸=x′
i}, (2.1)

where ci is the i-th Lipschitz coefficient of f (with respect to the Hamming
metric).
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McDiarmid’s inequality is based on the following bound on the moment-
generating function.

Lemma 2.2 (McDiarmid 1989). Let X = (X1, . . . , Xn) be a vector of inde-
pendent random variables taking values in Ω and f : Ω → R be c-Lipschitz.
Then for any s > 0,

E
[
es(f(X)−E f(X))

]
⩽ exp

(
s2

8
∥c∥22

)
.

We can now state the following McDiarmid’s inequality, which consti-
tutes one of the pillars of our results. It states that a Lipschitz function of
independent random variables concentrates around its expectation.

Theorem 2.3 (McDiarmid’s inequality McDiarmid 1989). Let f : Ω → R be
c-Lipschitz and X = (X1, . . . , Xn) be a vector of independent random variables
that takes values in Ω. Then for every t > 0,

P(f(X) − E f(X) ⩾ t) ⩽ exp

(
− 2t2

∥c∥22

)
. (2.2)

In the following, we extend McDiarmid’s inequality to the graph-dependent
case, where the dependencies among random variables are characterized by a
dependency graph. We first define the notion of dependency graphs, which is a
widely used model in probability, statistics, and combinatorics, see Erdős and
Lovász (1975); Janson et al (1988); Chen (1978); Baldi and Rinott (1989) for
some classical results.

Given a graph G = (V,E), we say that random variables {Xi}i∈V are G-
dependent if for any disjoint S, T ⊂ V such that S and T are non-adjacent in
G (that is, no edge in E has one endpoint in S and the other in T ), random
variables {Xi}i∈S and {Xj}j∈T are independent. See Figure 3 for an example.
Formally, we define the dependency graphs in the following.

Definition 2.4 (Dependency graphs). An undirected graph G is called a
dependency graph of a random vector X = (X1, . . . , Xn) if
(b1) V (G) = [n].
(b2) For all disjoint I, J ⊂ [n], if I, J are not adjacent in G, then {Xi}i∈I and

{Xj}j∈J are independent.

The above definition of dependency graphs is a strong version; there are
ones with weaker assumptions, such as the one used in Lovász local lemma. Let
Kn denote the complete graph on [n], that is, every two vertices are adjacent.
Then Kn is a dependency graph for any set of variables {Xi}i∈[n]. Note that
the dependency graph for a set of random variables may not be necessarily
unique, and the sparser ones are the more interesting ones.
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Fig. 3: A dependency graph G for random variables {Xi}i∈[6]. Random vari-
ables {X1, X2} and {X5, X6} are independent, since disjoint vertex sets {1, 2}
and {5, 6} are not adjacent in G.

Here we introduce a widely-studied random process that generates depen-
dent data whose dependency graph can be naturally constructed for illustra-
tion purposes. Consider a data-generating procedure modeled by the spatial
Poisson point process, which is a Poisson point process on R2, see Linderman
and Adams (2014); Kirichenko and Van Zanten (2015) for discussions of using
this process to model data collections in various machine learning applications.
The number of points in each finite region follows a Poisson distribution, and
the number of points in disjoint regions are independent. Given a finite set
{Ui}ni=1 of regions in R2, let Xi be the number of points in region Ui for every
i ∈ [n]. Then the graph G ([n], {{i, j} : Ui ∩ Uj ̸= ∅}) is a dependency graph of
the random variables {Xi}ni=1.

An important property of the dependency graph, in view of the definition
of fractional independent vertex covers, is that if we have a fractional inde-
pendent vertex cover {(Ik, wk)}k∈[K] of G, then we may decompose the sum of
interdependent variables into a weighted sum of sums of independent variables.

Lemma 2.5. (Janson, 2004, Lemma 3.1) Let G be a graph, and
{(Ik, wk)}k∈[K] be a fractional independent vertex cover of G. Let {ui}i∈V (G)

be a set of any numbers. Then

∑
i∈V (G)

ui =
∑

i∈V (G)

K∑
k=1

wk1{i∈Ik}ui =

K∑
k=1

wk

∑
i∈Ik

ui, (2.3)

where each Ik ∈ I(G) is an independent set. In particular, we have the
following.

• By setting ui = 1 for each i ∈ V (G), we have

|V (G)|=
K∑

k=1

wk|Ik|. (2.4)

• By letting {ui}i∈V (G) be some G-dependent variables {Xi}i∈V (G), we have
(2.3) becomes a weighted sum of independent random variables {Xi}i∈Ik .
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2.3 Concentration bounds for decomposable functions

Notice that McDiarmid’s inequality applies to independent random vari-
ables. Janson (2004) derived a Hoeffding-like inequality for graph-dependent
random variables by decomposing the sum into sums of independent vari-
ables. Janson’s bound is a special case of McDiarmid-type inequality tailored
for interdependent random variables, especially when the function involves
summation.

Theorem 2.6 (Janson’s concentration inequality, Janson 2004). Let random
vector X be G-dependent such that for every i ∈ V (G), random variable Xi

takes values in a real interval of length ci ⩾ 0. Then, for every t > 0,

P

 ∑
i∈V (G)

Xi − E
∑

i∈V (G)

Xi ⩾ t

 ⩽ exp

(
− 2t2

χf (G)∥c∥22

)
, (2.5)

where c = (ci)i∈V (G) and χf (G) is the fractional chromatic number of G.

We will extend this result, and obtain similar concentration results under
certain decomposability constraints for Lipschitz functions of graph-dependent
random variables defined in Definition 2.7.

Definition 2.7 (Decomposable c-Lipschitz functions). Given a graph G on n
vertices and a vector c = (ci)i∈[n] ∈ Rn

+, a function f : Ω → R is decomposable
c-Lipschitz with respect to graph G if for all x = (x1, . . . , xn) ∈ Ω and for
all fractional independent vertex covers {(Ij , wj)}j of G, there exist (ci)i∈Ij -
Lipschitz functions {fj : ΩIj → R}j such that

f(x) =
∑
j

wjfj(xIj ), (2.6)

where for every set V ⊆ [n], we write ΩV :=
∏

i∈V Ωi, and xV := {Xi}i∈V .

Theorem 2.8 (Usunier et al 2005; Amini and Usunier 2015). Let function
f : Ω → R be decomposable c-Lipschitz, and Ω-valued random vector X be
G-dependent. Then for t > 0,

P (f(X) − E f(X) ⩾ t) ⩽ exp

(
− 2t2

χf (G)∥c∥22

)
. (2.7)

Remark 2.9. The chromatic number χ(G) of a graph G is the smallest number
of colors needed to color the vertices of G such that no two adjacent vertices
share the same color. Let ∆(G) denote the maximum degree of G. It is well-
known that χf (G) ⩽ χ(G) ⩽ ∆(G) + 1, (see, for example, Bollobás (1998)).
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Thus in our bound (2.7), we can substitute χf (G) with χ(G) or ∆(G) + 1,
which may be easier to estimate in practice.

Proof of Theorem 2.8 Following the Cramér-Chernoff method (see, for example,
Boucheron et al 2013), we have for any s > 0 and t > 0,

P (f(X)− E f(X) ⩾ t) ⩽ e−st E
[
es(f(X)−E f(X))

]
. (2.8)

Let {(Ij , wj)}j∈[J] be a fractional independent vertex cover of the dependency
graph G with

J∑
j=1

wj = χf (G). (2.9)

Utilizing the decomposition property of the Lipschitz function (2.6), the moment-
generating function on the right-hand side of (2.8) can be written as

E
[
es(f(X)−E f(X))

]
= E

exp
 J∑

j=1

swj(fj(Ij)− E fj(Ij))

 ,

where each fj(Ij) = fj(XIj ) is some Lipschitz function of independent variables
{Xi}I∈Ij .

Now, let {p1, . . . , pJ} be any set of J strictly positive reals that sum to 1. Since∑J
j=1 ωj/χf (G) = 1 by (2.9), using the convexity of the exponential function and

Jensen’s inequality, we obtain that

E
[
es(f(X)−E f(X))

]
= E

exp
 J∑

j=1

pj
swj

pj
(fj(Ij)− E fj(Ij))


⩽ E

 J∑
j=1

pj exp
( swj

pj
(fj(Ij)− E fj(Ij))

)
=

J∑
j=1

pj E
[
exp

( swj

pj
(fj(Ij)− E fj(Ij))

)]
, (2.10)

where the last step is by the linearity of expectation. Note that each subset Ij in
summation (2.10) is an independent set, and therefore corresponds to independent
variables. Hence applying Lemma 2.2 to each expectation that appears in the above
summation gives

J∑
j=1

pj E
[
exp

( swj

pj
(fj(Ij)− E fj(Ij))

)]
⩽

J∑
j=1

pj exp

 s2w2
j

8p2j

∑
i∈Ij

c2i

 .

By rearranging terms in the exponential of the right-hand side of the inequality above
and setting

pj =
wj

√∑
i∈Ij

c2i∑J
j=1

(
wj

√∑
i∈Ij

c2i

) ,
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we have that

J∑
j=1

pj exp

 s2w2
j

8p2j

∑
i∈Ij

c2i

 =

J∑
j=1

pj exp

 s2

8

 J∑
j=1

wj

√∑
i∈Ij

c2i

2


= exp

 s2

8

 J∑
j=1

wj

√∑
i∈Ij

c2i

2
 ,

where the last equality is by recalling that the sum of pi equals 1. By Cauchy-Schwarz
inequality, J∑

j=1

wj

√∑
i∈Ij

c2i

2

=

 J∑
j=1

√
wj

√
wj

∑
i∈Ij

c2i

2

⩽

 J∑
j=1

wj

 J∑
j=1

wj

∑
i∈Ij

c2i

 = χf (G)
∑

i∈V (G)

c2i ,

where the last equality is due to decomposition (2.3) and equation (2.9). The proof
is then completed by choosing s = 4t/(χf (G)

∑
i∈V (G) c

2
i ) in (2.8). □

2.4 Concentration bounds for general Lipschitz functions

We have demonstrated concentration results for functions with specific decom-
posable constraints. Moving forward, we extend our study to encompass more
general Lipschitz functions. To begin with, we present concentration results
for scenarios involving forest-dependence, wherein the dependency graphs are
structured as forests. It is worth recalling that a forest is a disjoint union of
trees.

Theorem 2.10 (Zhang et al 2019; Zhang 2022). Let function f : Ω → R be
c-Lipschitz, and Ω-valued random vector X be G-dependent. If G is a disjoint
union of trees {Ti}i∈[k]. Then for t > 0,

P (f(X) − E f(X) ⩾ t) ⩽ exp

(
− 2t2∑k

i=1 c
2
min,i +

∑
{i,j}∈E(G)(ci + cj)2

)
,

(2.11)

where cmin,i := min{cj : j ∈ V (Ti)} for all i ∈ [k].

The proof of this theorem is by first properly ordering {Xi}i∈V (G) as
(Xi)i∈[n], and rewriting f(X) − E f(X) as a summation

∑
i∈[n] Vi, where

Vi := E[f(X)|X1, . . . Xi] − E[f(X)|X1, . . . Xi−1].

In the proof, each tree Ti is rooted by choosing the vertex with the minimum
Lipschitz coefficient min{cj : j ∈ V (Ti)} in that tree as the root. It can be
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shown that for some suitable ordering, each Vi ranges in an interval of length at
most ci+cj , where j is the parent of i in the tree, or simply ci (if i corresponds
to a root vertex). The theorem then follows by applying the Chernoff-Cramér
technique to

∑n
i=1 Vi. The detailed proof is a bit involved and can be found in

Zhang (2022).

Remark 2.11. If random variables (X1, . . . , Xn) are independent, then the
empty graph Kn = ([n], ∅) is a valid dependency graphs for {Xi}i∈[n]. In this
case, inequality (2.11) gets reduced to the McDiarmid’s inequality (2.2), since
each vertex is treated as a tree.

If all Lipschitz coefficients are of the same value c, then the denominator
of the exponent in (2.11) becomes kc2 + 4(n − k)c2 = (4n − 3k)c2, since the
number of edges in the forest is n − k. The denominator in Janson’s bound
(2.5) is 2nc2, since the fractional chromatic number of any tree is 2. Thus if
k ⩾ 2n/3, then bound (2.11) is tighter than Janson’s concentration inequality
(2.5).

2.4.1 Concentration for general graphs

In this subsection, we consider the concentration of general Lipschitz functions
of variables whose dependency graph may not be a forest. This is by utilizing

tree-partitions of the dependency graphs via vertex identifications, and then
applying the forest-dependent results obtained.

Theorem 2.12. Let function f : Ω → R be c-Lipschitz, and Ω-valued random
vector X be G-dependent. Then for any t > 0,

P(f(X) − E f(X) ⩾ t) ⩽ exp

(
− 2t2

D(G, c)

)
,

where

D(G, c) := min
(F,{Fx}x∈V (F ))∈TP(G)

 ∑
T∈T (F )

c̃2min,T +
∑

{u,v}∈E(F )

(c̃u + c̃v)2

 ,

with c̃u :=
∑

i∈Fu
ci for all u ∈ V (F ) and c̃min,T := min{c̃i : i ∈ V (T )} for all

T ∈ T (F ).

Proof For every u ∈ V (F ), we define a random vectorYu = {Xi}i∈Fu
, and treat each

Yu as a random variable. We then define a new random vectorY = (Yu)u∈V (F ), and
let g(Y) = f(X). It is easy to check that g is c̃-Lipschitz by the triangle inequality,
where c̃ = (c̃u)u∈V (F ). Hence the theorem immediately follows from Theorem 2.10.

□

It is useful to define the notion of forest complexity, which depends only on
the graph, especially when the Lipschitz coefficients are of the same order.
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Definition 2.13 (Forest complexity). The forest complexity of a graph G is
defined by

Λ(G) := min
(F,{Fx}x∈V (F ))∈TP(G)

 ∑
T∈T (F )

min
u∈T

|Fu|2+
∑

{u,v}∈E(F )

|Fu ∪ Fv|2
 ,

where the minimization is over all tree-partitions of G.

Remark 2.14. The width of a tree-partition is the maximum number of ver-
tices in a bag. The tree-partition-width tpw(G) of G is the minimum width of
a tree-partition of G. Let F ∈ TP(G) be the tree-partition with tree-partition
width tpw(G). Then

Λ(G) ⩽ |T (F )|tpw(G)2 + 4|E(F )|tpw(G)2 = (|V (F )|+3|E(F )|)tpw(G)2,

since the number of disjoint trees in a forest F equals |V (F )|−|E(F )|. Upper
bounds on tree-partition-width Λ(G) can be obtained using treewidth and the
maximum degree of G, and are beyond the scope of this paper, see Wood (2009)
for more details.

If all the Lipschitz coefficients are of the same value, then Theorem 2.12
gets simplified.

Corollary 2.15. Let function f : Ω → R be Lipschitz with the same coefficient
c, and Ω-valued random vector X be G-dependent. Then for t > 0,

P(f(X) − E f(X) ⩾ t) ⩽ exp

(
− 2t2

Λ(G)c2

)
. (2.12)

Similar to the theorems derived above, Corollary 2.15 also gives an expo-
nentially decaying bound on the probability of deviation. The rate of decay is
determined by the Lipschitz coefficients of the function, and the forest com-
plexity of the dependency graph. Intuitively, the closer the dependency graph
is to a forest, the faster the deviation probability decays. This uncovers how
the dependencies among random variables influence concentration.

2.4.2 Examples

Here we present several explicit examples to demonstrate and estimate the
forest complexity where random variables are structured as graphs. All these
examples naturally emerge in the context of random processes that are
intricately intertwined within graph structures.
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Example 2.16 (G is a tree). In this case, Λ(G) ⩽ |E(G)|(1+1)2+1 = 4n−3.
We get an upper bound of Λ(G) that is linear in the number of variables, which
is comparable to Janson’s concentration inequality up to some constant factor
(see (2.5) with χf (G) = 2 and Remark 2.11).

Example 2.17 (G is a cycle Cn). If n is even, a tree-partition is illustrated
in Figure 4, where the resulting forest is a path F of length n/2 with each gray
belt representing a ‘bag’. We will keep this convention for the rest of this paper.
By the illustrated tree-partition, Λ(G) ⩽ 2 × (1 + 2)2 + (n/2 − 2)(2 + 2)2 +
1 = O(n). When n is odd, according to the tree-partition shown in Figure 5,
Λ(G) ⩽ (1 + 2)2 + (n−1

2 − 1)(2 + 2)2 + 1 = O(n). Since χf ⩾ 2 for cycles,
our bound is again comparable to Janson’s concentration inequality (2.5) up to
some constant multiplicative factor.

G F

Fig. 4: A tree-partition of C6

G F

Fig. 5: A tree-partition of C5

Example 2.18 (G is a grid). Suppose G is a two-dimensional (m×m)-grid.
Then n = m2. Considering the tree-partition illustrated in Figure 6, we have

Λ(G) ⩽ 1 + 2

m∑
i=1

(2m− 1)2 = 2
3
m(2m + 1)(2m− 1) + 1 = O(m3) = O(n

3
2 ).

G

F

Fig. 6: A tree-partition of 4 × 4 gird
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3 Generalization for learning from
graph-dependent data

We now apply the concentration bounds obtained above to derive generaliza-
tion bounds for supervised learning from graph-dependent data. Let

S := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n

be a G-dependent training sample of size n, where X denotes the input space
and Y denotes the set of labels. Let D be the underlying distribution of data
on X × Y. Note that the sample S contains dependent data with the same
marginal distribution D.

Further we fix some ℓ : Y × Y → R+ as a non-negative loss function. For
any hypothesis f : X → Y, the empirical error on sample S is defined by

R̂S(f) :=
1

n

n∑
i=1

ℓ(yi, f(xi)).

For learning from dependent data, the generalization error can be defined in
various ways. We adopt the following widely-used one (Meir, 2000; Lozano
et al, 2006; Steinwart and Christmann, 2009; Hang and Steinwart, 2014)

R(f) := E
(x,y)∼D

[ℓ(y, f(x))], (3.1)

which assumes that the test data is independent of the training sample.

3.1 Generalization bounds via fractional Rademacher
complexity

Our first approach is based on Rademacher complexity (Bartlett and Mendel-
son, 2002). This approach can be extended to accommodate interdependent
data by utilizing the decomposition into independent sets described in Section
2.1.1.

Definition 3.1 (Fractional Rademacher complexity, Usunier et al 2005). Let
{(Ij , wj)}j be a fractional independent vertex cover of a dependency graph G
constructed over a training set S of size n, with

∑
j wj = χf (G). Let F = {f :

X → Y} be the hypothesis class. Then, the empirical fractional Rademacher
complexity of F given S is defined by

R̂⋆
S(F) =

1

n
E
σ

∑
j

wj sup
f∈F

∑
i∈Ij

σif(xi)

 , (3.2)

where σ = (σi)1⩽i⩽n denote a vector of n independent Rademacher variables,
that is, P(σi = −1) = P(σi = +1) = 1/2 for each i ∈ [n]. Moreover, the
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fractional Rademacher complexity of F is defined by

R⋆(F) = E
S

[
R̂⋆

S(F)
]
.

Remark 3.2. In the i.i.d. situation, the set of singleton vertices is a valid
fractional independent vertex cover, and the fractional Rademacher com-
plexity (3.2) simplifies to the original Rademacher complexity (Bartlett and
Mendelson, 2002) defined by

R̂S(F) =
1

n
E
σ

sup
f∈F

∑
i∈[n]

σif(xi)

 . (3.3)

Additionally, because the former is a sum of empirical Rademacher complexi-
ties, it enables one to get estimates by extending the properties of the empirical
Rademacher complexity.

In the following, we give an example of a function class of linear func-
tions with bounded-norm weight vectors, for which the empirical Rademacher
averages can be bounded directly.

Theorem 3.3. Let F = {x 7→ ⟨w, ϕ(x)⟩ : ∥w∥ ⩽ B} be a class of linear
functions with bounded weights in a feature space such that ∥ϕ(x)∥ ⩽ Γ for all
x. Then

R̂⋆
S(F) ⩽ BΓ

√
χf (G)

n
. (3.4)

Proof In view of the definition of the empirical fractional Rademacher complexity
(3.2), by the linearity of expectation, we have

R̂⋆
S(F) =

1

n

∑
j

wj E
σ

 sup
∥w∥⩽B

∑
i∈Ij

⟨w, σiϕ(xi)⟩



⩽
B

n

∑
j

wj E
σ

∥∥∥∥∥∥
∑
i∈Ij

σiϕ(xi)

∥∥∥∥∥∥ ⩽
B

n

∑
j

wj

E
σ

∥∥∥∥∥∥
∑
i∈Ij

σiϕ(xi)

∥∥∥∥∥∥
2


1/2

,

where the first inequality is by noting ∥w∥ ⩽ B, and applying Cauchy-Schwarz
inequality to the inner product, and the second inequality is by Jensen’s inequality.

As the Rademacher variables are independent, we have E[σiσk] = E[σi]E[σk] = 0
for any distinct i, k. Hence we have

E
σ

∥∥∥∥∥∥
∑
i∈Ij

σiϕ(xi)

∥∥∥∥∥∥
2

= E
σ

 ∑
i,k∈Ij

σiσk⟨ϕ(xi), ϕ(xk)⟩

 =
∑
i∈Ij

∥ϕ(xi)∥2,
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and therefore,

R̂⋆
S(F) ⩽

B

n

∑
j

wj

∑
i∈Ij

∥ϕ(xi)∥2
1/2

.

Since we have ∥ϕ(xi)∥ ⩽ Γ in the feature space, then

R̂⋆
S(F) ⩽

BΓ

n

∑
j

wj

√
|Ij | =

BΓχf (G)

n

∑
j

wj

χf (G)

√
|Ij |.

By noticing that
∑

j wj/χf (G) = 1, using Jensen’s inequality for the square root
function yields

R̂⋆
S(F) ⩽

BΓχf (G)

n

√∑
j

wj

χf (G)
|Ij | =

BΓ
√

χf (G)

n

√∑
j

wj |Ij |.

The result follows then by noting
∑

j wj |Ij |= n by (2.4). □

Remark 3.4. Note that ϕ could be the feature mapping corresponding to the
last hidden layer of a neural network, or a kernel function. In particular,
under the assumption of Theorem 3.3, let ϕ be a feature mapping associated to
a kernel K such that K(x, x) ⩽ Γ2 for all x. Then the standard Rademacher
complexity of kernel-based hypotheses (Mohri et al, 2018, Theorem 6.12) gives

that R̂S(F) ⩽ BΓ/
√
n, and in comparison, our bound (3.4) has an additional

factor
√

χf (G), which becomes exactly 1 as in Remark 3.2.
It is also worth noting that the fractional Rademacher complexity is defined

for a given fractional cover. In general, our analysis holds for any optimal
fractional cover; nevertheless, various cover selections may result in differ-
ent bound values. Nonetheless, in practice, this influence is unlikely to have a
significant impact.

We now obtain generalization bounds using the fractional Rademacher
complexity.

Theorem 3.5 (Usunier et al 2005; Amini and Usunier 2015). Given a sample

S of size n with dependency graph G and a loss function ℓ : Y × Ŷ → [0,M ].
Let F denote the hypothesis class. Then, for any δ ∈ (0, 1), with probability at
least 1 − δ, we have, for all f ∈ F , that

R(f) ⩽ R̂S(f) + 2R⋆(ℓ ◦ F) + M

√
χf (G)

2n
log
(
1
δ

)
, (3.5)

and

R(f) ⩽ R̂S(f) + 2R̂⋆
S(ℓ ◦ F) + 3M

√
χf (G)

2n
log
(
2
δ

)
, (3.6)

where ℓ ◦ F = {(x, y) 7→ ℓ(y, f(x)) | f ∈ F}.
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Proof For any f ∈ F , we have R̂S(f) is an unbiased estimator of R(f), since
the data points in the sample S are assumed to be G-dependent and have the
same marginal distribution. Hence considering a G-dependent “ghost” sample S′ =
((x′1, y

′
1), . . . , (x

′
n, y

′
n)) that is independently generated from the same distribution

as S, we have

sup
f∈F

(R(f)− R̂S(f)) = sup
f∈F

(
E
S′

R̂S′(f)− R̂S(f)

)
= sup

f∈F

(
E
S′

[
R̂S′(f)− R̂S(f)

])
.

Let {(Ij , wj)}j∈[J] be a fractional independent vertex cover of the dependency graph
G with

∑
j wj = χf (G). By Jensen’s inequality and the convexity of the supremum,

we get

sup
f∈F

(
E
S′

[
R̂S′(f)− R̂S(f)

])
⩽ E

S′

[
sup
f∈F

(R̂S′(f)− R̂S(f))

]

= E
S′

 sup
f∈F

 1

n

∑
i∈[n]

(ℓ(y′i, f(x
′
i))− ℓ(yi, f(xi)))


=

1

n
E
S′

 sup
f∈F

 J∑
j=1

wj

∑
i∈Ij

(ℓ(y′i, f(x
′
i))− ℓ(yi, f(xi)))

 ,

where the second equality is due to the decomposition (2.3).
Then by the sub-additivity of the supremum, we have

sup
f∈F

(R(f)− R̂S(f)) ⩽ g(S),

where g(S) is defined by

g(S) =
1

n
E
S′

 J∑
j=1

wj sup
f∈F

∑
i∈Ij

(ℓ(y′i, f(x
′
i))− ℓ(yi, f(xi)))

 ,

and satisfies g(S) =
∑

j wjgj(S), where for each j,

gj(S) :=
1

n
E
S′

 sup
f∈F

∑
i∈Ij

(ℓ(y′i, f(x
′
i))− ℓ(yi, f(xi)))

 .

Note that each function gj has bounded difference M/n and satisfies (2.6), and
therefore is a decomposable Lipschitz function. Then using Theorem 2.8, for all
δ ∈ (0, 1), with probability at least 1− δ, we have

sup
f∈F

(R(f)− R̂S(f)) ⩽ E
S
[g(S)] +M

√
χf (G)

2n
log

(
1
δ

)

=

J∑
j=1

wj

n
E

S,S′

 sup
f∈F

∑
i∈Ij

(ℓ(y′i, f(x
′
i))− ℓ(yi, f(xi)))

+M

√
χf (G)

2n
log

(
1
δ

)
.

Note that

E
S,S′

 sup
f∈F

∑
i∈Ij

(ℓ(y′i, f(x
′
i))− ℓ(yi, f(xi)))


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= E
S,S′

E
σ

 sup
f∈F

∑
i∈Ij

σi(ℓ(y
′
i, f(x

′
i))− ℓ(yi, f(xi)))

 ,

since the introduction of Rademacher variables σ = (σi)i, uniformly taking values in
{−1,+1}, does not change the expectation. Indeed, for σi = +1, the corresponding
summand stays unaltered, and for σi = −1, the corresponding summand reverses
sign, which is the same as flipping (xi, yi) and (x′i, y

′
i) between S and S′. This change

has no effect on the overall expectation as we are considering the expectation over
S and S′, and by noting that S and S′ are independent and Ij is some independent
set. Therefore, we have

sup
f∈F

(R(f)− R̂S(f))

⩽
J∑

j=1

wj

n
E

S,S′
E
σ

 sup
f∈F

∑
i∈Ij

σi(ℓ(y
′
i, f(x

′
i))− ℓ(yi, f(xi)))

+M

√
χf (G)

2n
log

(
1
δ

)

⩽ 2

J∑
j=1

wj

n
E
σ
E
S

 sup
f∈F

∑
i∈Ij

σi(ℓ(yi, f(xi)))

+M

√
χf (G)

2n
log

(
1
δ

)
, (3.7)

where the last step uses the sub-additivity of the supremum. Then in view of
Definition 3.1 of R̂⋆

S, we obtain

sup
f∈F

(R(f)− R̂S(f)) ⩽ 2E
S

[
R̂⋆

S(ℓ ◦ F)
]
+M

√
χf (G)

2n
log

(
1
δ

)
.

Therefore the first bound (3.5) follows from the definition of the supremum, that is,
for all f ∈ F ,

R(f)− R̂S(f) ⩽ sup
f∈F

(
R(f)− R̂S(f)

)
.

Note that

R̂⋆
S(ℓ ◦ F) =

∑
j

wj

 1

n
E
σ

 sup
f∈F

∑
i∈Ij

σi(ℓ(yi, f(xi)))


satisfies the condition of Theorem 2.8 with bounded difference M/n, and therefore
concentrates around its expectation R⋆(ℓ ◦ F). Then using the union bound with
(3.5), yields the second bound (3.6). □

From Remark 3.2, Theorem 3.5 is a natural extension of the standard
Rademacher generalization bounds when examples are identically and inde-
pendently distributed (see, for example, Mohri et al 2018, Theorem 3.3), as in
this case, χf (G) = 1.

Remark 3.6. To use the symmetrization technique in equation (3.7), the vari-
ables involved in the same summation need to be independent. Consequently,
when extending the concept of Rademacher complexities to scenarios involving
interdependent variables, it becomes necessary to decompose the set of ran-
dom variables into independent sets. In this context, the fractional independent
vertex cover {(Ij , wj)}j with

∑
k wk = χf (G) emerges as a pivotal tool for

achieving an optimal decomposition, as χf (G) is the minimum of
∑

k wk over
all fractional independent vertex covers.
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3.2 Generalization bounds via algorithmic stability

This section establishes stability bounds for learning from graph-dependent
data, using the concentration inequalities derived in the last section. Algo-
rithmic stability has been used in the study of classification and regression to
derive generalization bounds (Rogers and Wagner, 1978; Devroye and Wag-
ner, 1979; Kearns and Ron, 1999; Kutin and Niyogi, 2002). A key advantage
of stability bounds is that they are designed for specific learning algorithms,
exploiting particular properties of the algorithms.

Since uniform stability was introduced in Bousquet and Elisseeff (2002), it
has been among the most widely used notions of algorithmic stability. Given
a training sample S of size n, for every i ∈ [n], removing the i-th element from
S results in a sample of size n− 1, which is denoted by

S\i := ((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1) . . . , (xn, yn)).

A learning algorithm A is a function that maps the training set S onto a
function fA

S : X → Y.

Definition 3.7 (Uniform stability, Bousquet and Elisseeff 2002). Given an
integer n > 0, the learning algorithm A is βn-uniformly stable with respect to
the loss function ℓ, if for any i ∈ [n], S ∈ (X × Y)n, and (x, y) ∈ X × Y, it
holds that

|ℓ(y, fA
S (x)) − ℓ(y, fA

S\i(x))|⩽ βn. (3.8)

Intuitively, small perturbations of the training sample have little effect on
the learning for a stable learning algorithm.

Now, we begin our analysis by considering the difference between the empir-
ical error and the generalization error of a learning algorithm fA

S trained over
a G-dependent sample S, formally defined by

ΦA(S) := R(fA
S ) − R̂S(fA

S ). (3.9)

The mapping ΦA : (X ×Y)n → R will play a critical role in estimating R(fA
S )

via stability. We will first bound the probability of the deviation of ΦA(S) from
its expectation (Lemma 3.8), and then obtain an upper bound of expected
value of ΦA(S) (Lemma 3.10).

Lemma 3.8. Given a G-dependent sample S of size n, and a βn-uniformly
stable learning algorithm A. Suppose the loss function ℓ is bounded by M . Then
for any t > 0,

P(ΦA(S) − E[ΦA(S)] ⩾ t) ⩽ exp

(
− 2n2t2

Λ(G)(4nβn + M)2

)
.
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We prove the following lemma, which states that the Lipschitz coeffi-
cients of ΦA(·) are all bounded by 4βn + M/n. Then Lemma 3.8 follows from
Lemma 3.9 and Theorem 2.15, since the Lipschitz coefficients are all of the
same value.

Lemma 3.9. Given a βn-uniformly stable learning algorithm A, for any
S,S′ ∈ (X × Y)n that differ only in one entry, we have

|ΦA(S) − ΦA(S′)|⩽ 4βn +
M

n
.

Proof In the literature Bousquet and Elisseeff (2002), Lemma 3.9 was proved for the
i.i.d. case, actually, the proof remains valid in our dependent setting. Assume that S
and S′ differ only in i-th entry, and denote S′ as

Si := ((x1, y1), . . . , (xi−1, yi−1), (x
′
i, y

′
i), (xi+1, yi+1) . . . , (xm, ym)),

such that the marginal distribution of (x′i, y
′
i) is also D.

Notice that we do not require the data to be i.i.d., as samples are dependent,
and have the same marginal probability distribution D. To begin with, we bound
R(fAS )−R(fASi) using the triangle inequality,

∣∣R(fAS )−R(fASi)
∣∣ ⩽ ∣∣R(fAS )−R(fAS\i)

∣∣+ ∣∣R(fAS\i)−R(fASi)
∣∣

=
∣∣E
D
[ℓ(y, fAS (x))]− E

D
[ℓ(y, fAS\i(x))]

∣∣+ ∣∣E
D
[ℓ(y, fAS\i(x))]− E

D
[ℓ(y, fASi(x))]

∣∣
=

∣∣E
D
[ℓ(y, fAS (x))− ℓ(y, fAS\i(x))]

∣∣+ ∣∣E
D
[ℓ(y, fAS\i(x))− ℓ(y, fASi(x))]

∣∣ ⩽ 2βn,

where the last inequality is by the uniform stability defined by (3.8).

Then we bound R̂S(f
A
S )− R̂Si(fASi),

n
∣∣R̂S(f

A
S )− R̂Si(f

A
Si)

∣∣ =
∣∣∣∣∣∣

∑
(xj ,yj)∈S

ℓ(yj , f
A
S (xj))−

∑
(xj ,yj)∈Si

ℓ(yj , f
A
Si(xj))

∣∣∣∣∣∣
⩽

∣∣ℓ(yi, fAS (xi))− ℓ(y′i, f
A
Si(x

′
i))

∣∣+∑
j ̸=i

∣∣∣ℓ(yj , fAS (xj))− ℓ(yj , f
A
Si(xj))

∣∣∣
⩽

∑
j ̸=i

∣∣∣ℓ(yj , fAS (xj))− ℓ(yj , f
A
S\i(xj))

∣∣∣+∑
j ̸=i

∣∣∣ℓ(yj , fAS\i(xj))− ℓ(yj , f
A
Si(xj))

∣∣∣
+

∣∣ℓ(yi, fAS (xi))− ℓ(y′i, f
A
Si(x

′
i))

∣∣ ⩽ 2nβn +M,

where the last inequality is by the uniform stability and the assumption that ℓ is
bounded by M .

Combining the above bounds, by the triangle inequality, we have that∣∣ΦA(S)− ΦA(Si)
∣∣ = ∣∣(R(fAS )− R̂S(f

A
S ))− (R(fASi)− R̂Si(f

A
Si))

∣∣
⩽

∣∣R(fAS )−R(fASi)|+|R̂(fAS )− R̂Si(f
A
Si)

∣∣ ⩽ 4βn +
M
n
,

which completes the proof. □
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We are now in measure to bound the expectation of ΦA(S).

Lemma 3.10. Let S be a G-dependent sample of size n. Suppose the maximum
degree of G is ∆ = ∆(G). Let A be a βi-uniformly stable learning algorithm
for every i ∈ [n− ∆, n], and βn,∆ = maxi∈[0,∆] βn−i. Then we have

E[ΦA(S)] ⩽ 2βn,∆(∆ + 1).

The proof of the lemma is based on iterative perturbations of the training
sample S, where a perturbation is essentially removing a data point from S.
The property of uniform stability of the algorithm guarantees that each per-
turbation causes a discrepancy up to βn,∆, and in total 2(∆+1) perturbations
have to be made to eliminate the dependency between a data point and the
others.

We start with a technical lemma before the proof of Lemma 3.10.

Lemma 3.11. Under the same assumptions in Lemma 3.10, we have

max
(xi,yi)∈S

E
(x,y),S

[ℓ(y, fA
S (x)) − ℓ(yi, f

A
S (xi))] ⩽ 2βn,∆(∆ + 1).

Proof For every i ∈ [n], let NG(i) be the set of vertices adjacent to i in graph G, and

suppose N+
G (i) = NG(i) ∪ {i} = {j1, . . . , jni} with jk−1 > jk. Define S(i,0) = S and

for every k ∈ [ni], let S(i,k) be obtained from S(i,k−1) by removing the jk-th entry.
By the uniform stability of A, for any (x, y) ∈ X × Y and k ∈ [ni], we have∣∣ℓ(y, fAS(i,k−1)(x))− ℓ(y, fAS(i,k)(x))

∣∣ ⩽ βn,∆.

By a decomposition using a telescoping summation,

ℓ(y, fAS (x)) =

ni∑
k=1

(ℓ(y, fAS(i,k−1)(x))− ℓ(y, fAS(i,k)(x)) + ℓ(y, fAS(i,ni)
(x)).

Similarly, we also get

ℓ(yi, f
A
S (xi)) =

ni∑
k=1

(ℓ(yi, f
A
S(i,k−1)(xi))− ℓ(yi, f

A
S(i,k)(xi)) + ℓ(yi, f

A
S(i,ni)

(xi)).

Now we are ready to bound the difference

ℓ(y, fAS (x))− ℓ(yi, f
A
S (xi))

=

ni∑
k=1

(
(ℓ(y, fAS(i,k−1)(x))− ℓ(y, fAS(i,k)(x)))− (ℓ(yi, f

A
S(i,k)(xi))− ℓ(yi, f

A
S(i,k−1)(xi)))

)
+ ℓ(y, fAS(i,ni)

(x))− ℓ(yi, f
A
S(i,ni)

(xi))
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⩽
ni∑
k=1

|ℓ(y, fAS(i,k−1)(x))− ℓ(y, fAS(i,k)(x))|

+

ni∑
k=1

|ℓ(yi, fAS(i,k)(xi))− ℓ(yi, f
A
S(i,k−1)(xi))|+ℓ(y, fAS(i,ni)

(x))− ℓ(yi, f
A
S(i,ni)

(xi))

⩽ 2niβn,∆ + ℓ(y, fAS(i,ni)
(x))− ℓ(yi, f

A
S(i,ni)

(xi)).

Therefore, by noting that ni = |N+
G (i)|⩽ ∆+ 1 for all i, we have

E
S,(x,y)

[ℓ(y, fAS (x))− ℓ(yi, f
A
S (xi))]

⩽ E
S,(x,y)

[ℓ(y, fAS(i,ni)
(x))− ℓ(yi, f

A
S(i,ni)

(xi))] + 2niβn,∆

⩽ E
S,(x,y)

[ℓ(y, fAS(i,ni)
(x))− ℓ(yi, f

A
S(i,ni)

(xi))] + 2βn,∆(∆ + 1)

= E
S,(x,y)

[ℓ(y, fAS(i,ni)
(x))]− E

S
[ℓ(yi, f

A
S(i,ni)

(xi))] + 2βn,∆(∆ + 1)

= E
S(i,ni),(x,y)

[ℓ(y, fAS(i,ni)
(x))]− E

S(i,ni),(xi,yi)
[ℓ(yi, f

A
S(i,ni)

(xi))] + 2βn,∆(∆ + 1)

= 2βn,∆(∆ + 1),

where the last equality is because (xi, yi) and (x, y) are independent of S(i,ni), and
have the same distribution. □

Now we are ready to prove Lemma 3.10.

Proof of Lemma 3.10 From the definition of ΦA(S) in (3.9), we have

E
S
[ΦA(S)] = E

S

[
E

(x,y)
[ℓ(y, fAS (x))]− 1

n

n∑
i=1

ℓ(yi, f
A
S (xi))

]

=
1

n

n∑
i=1

E
S,(x,y)

[ℓ(y, fAS (x))− ℓ(yi, f
A
S (xi))] ⩽ 2βn,∆(∆ + 1),

where the last inequality is by Lemma 3.11. □

Combining Lemma 3.8 and Lemma 3.10 gives the following theorem, which
upper-bounds the generalization error of learning algorithms trained over G-
dependent training sets of size n.

Theorem 3.12. Let S be a sample of size n with dependency graph G. Suppose
the maximum degree of G is ∆. Assume that the learning algorithm A is βi-
uniformly stable for all i ∈ [n − ∆, n]. Suppose the loss function ℓ is bounded
by M . Let βn,∆ = maxi∈[0,∆] βn−i. For any δ ∈ (0, 1), with probability at least
1 − δ, it holds that

R(fA
S ) ⩽ R̂S(fA

S ) + 2βn,∆(∆ + 1) +
4nβn + M

n

√
Λ(G)
2

log
(
1
δ

)
.
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Remark 3.13. It is well known that for many learning algorithms, βn =
O(1/n) (see, for example, Bousquet and Elisseeff 2002), in this case, we have
that βn,∆(∆ + 1) ⩽ βn−∆(∆ + 1) = O( ∆

n−∆ ), which vanishes asymptoti-

cally if ∆ = o(n). The term O
(√

Λ(G)/n
)

also vanishes asymptotically if

Λ(G) = o(n2). We also observe that if the training data are i.i.d., Theorem 3.12
degenerates to the standard stability bound obtained in Bousquet and Elisseeff
(2002), by setting ∆ = 0, βn,∆ = βn, and Λ(G) = n.

4 Applications

In this section, we present three practical applications related to learning
with interdependent data, for which we use the methodology presented in the
previous sections to derive generalization bounds.

4.1 Bipartite ranking

The goal of bipartite ranking is to assign higher scores to instances of the
positive class than the ones of the negative class (Freund et al, 2003; Agar-
wal and Niyogi, 2009). This framework corresponds to many applications of
information retrieval such as recommender systems (Sidana et al, 2021), and
uplift-modeling (Betlei et al, 2021), etc.

It has attracted a lot of interest in recent years since the empirical ranking
error of a scoring function h : X → R over a training set T := (xi, yi)1⩽i⩽m

with yi ∈ {−1,+1} defined by

L̂T (h) =
1

m−m+

∑
i:yi=1

∑
j:yj=−1

1{h(xi)⩽h(xj)}, (4.1)

is equal to one minus the Area Under the ROC Curve (AUC) of h (see, for
example, Cortes and Mohri 2004), where m− :=

∑m
i=1 1{yi=−1} and m+ :=∑m

i=1 1{yi=1} are the number of negative and positive instances in the training
set T respectively.

For two instances of different classes (x, y), (x′, y′) in T such that y ̸=
y′, by considering the (unordered) pairs of examples {(x, y), (x′, y′)}, and the
classifier of pairs f associated to a scoring function h defined by

f(x, x′) = h(x) − h(x′),

we can rewrite the bipartite ranking loss (4.1) of h over T as the classification
error of the associated f over the pairs of instances of different classes,

R̂S(f) = L̂T (h) =
1

n

∑
{(x,y),(x′,y′)}∈S

1{zy,y′f(x,x′)⩽0}, (4.2)
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where n = m−m+,

S := {(x, y), (x′, y′) : (x, y) ∈ T, (x′, y′) ∈ T, y ̸= y′}

is the set of n unordered pairs of examples from different classes in T , and

zy,y′ := 21{y−y′>0} − 1.

Note that z1,−1 = 1 and z−1,1 = −1.
Let

T+ := {(x+
i , 1) : i ∈ [m+]} and T− := {(x−

j ,−1) : j ∈ [m−]}

be the sets of positive and negative instances of T respectively. Then T = T+∪
T−. Without loss of generality, we assume that m+ ⩽ m−, which corresponds
to the usual situation in information retrieval, where there are fewer positive
(relevant) instances than negative (irrelevant) ones.

In this case, the independent covers of the corresponding dependency graph
of S is {(Ik, 1)}k∈{1,...,m−}, where

Ik =
{(

x+
i , x

−
σk,m− (i)

)
: i ∈ [m+]

}
,

with σk,m− denoting the permutation that is defined by

σk,m−(i) =

{
(k + i− 1)(mod m−), if (k + i− 1)(mod m−) ̸= 0

m−, otherwise.

Figure 7 illustrates the dependency graph of a bipartite ranking problem
with m+ = 2 positive examples and m− = 3 negative instances as well as its
corresponding independent covers represented by dotted ellipsoids.

Remark 4.1. In the bipartite ranking, the dependent pairs of instances cor-
respond to the edges of a complete bipartite graph Km+,m− , since pairs are
chosen with one positive instance and one negative instance, see Figure 7 for
illustration.

Given a graph G, the line graph of G has the edges of G as its vertices, with
two vertices adjacent if the corresponding edges have a vertex in common in
G. Then the dependency graph for pairs S is the line graph of Km+,m− , known
as an m+ × m− Rook’s graph, which is a Cartesian product of two complete
graphs.

For bipartite ranking, it is easy to check that

χf

n
=

max(m−,m+)

m−m+
=

1

min(m−,m+)
.
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Fig. 7: The graph on the right is a dependency graph corresponding to a bipar-
tite ranking problem with m+ = 2 positive examples T+ = {(x+

1 , 1), (x+
2 , 1)};

and m− = 3 negative ones, T− = {(x−
1 ,−1), (x−

2 ,−1), (x−
3 ,−1)}. Each pair of

examples from different classes corresponds to an edge of the complete bipar-
tite graph K2,3 on the left, and is represented by a vertex of the dependency
graph on the right. Two pairs are adjacent in the dependency graph if they
have an example in common. Fractional independent covers {(Ik, 1)}1⩽k⩽3 are
shown by dotted ellipsoids.

Therefore by Theorem 3.3, Theorem 3.5, and Ledoux and Talagrand’s con-
traction lemma (Ledoux and Talagrand, 1991, p.78 Corollary 3.17) that can be

extended to fractional Rademacher complexities giving R̂⋆
S(ℓ ◦ F) = 2R̂⋆

S(F),
we can bound the generalization error of bipartite ranking as follows.

Corollary 4.2. Let T be a training set composed of m+ positive instances
and m− negative ones; and S the set of unordered pairs of examples from
different classes in T . Then for any scoring function from F = {f : (x, x′) 7→
⟨w, ϕ(x) − ϕ(x′)⟩ : ∥w∥ ⩽ B}, where ϕ is a feature mapping with bounded
norm such that ∥ϕ(x) − ϕ(x′)∥ ⩽ Γ for all (x, x′), and for any δ ∈ (0, 1), with
probability at least 1 − δ, we have

R(f) ⩽ R̂S(f) +
4BΓ√
m

+ 3

√
1
2m

log
(
2
δ

)
,

where m = min(m−,m+).
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4.2 Multi-class classification

We now address the problem of mono-label multi-class classification, where
the output space is a discrete set of labels Y = [K] with K classes. For the
sake of presentation, we denote an element of X × Y as xy := (x, y). For a
class of predictor functions H = {h : X × Y → R}, let ℓ be the instantaneous
loss of h ∈ H on example xy defined by

ℓ(y, h(xy)) =
1

K − 1

∑
y′∈Y\{y}

1{h(xy)⩽h(xy′ )}.

For any sample x, this loss function is the average number of classes, for which
h assigns a higher score to the pairs constituted by x and any other classes
that are not the true class of x. For a training set T = (xyi

i )1⩽i⩽m of size m,
the corresponding empirical error of a function h ∈ H is

L̂T (h) =
1

m(K − 1)

m∑
i=1

∑
y′∈Y\{yi}

1{
h(x

yi
i )⩽h(xy′

i )
}. (4.3)

Many multi-class classification algorithms like Adaboost.MR (Schapire and
Singer, 1999) or the multiclass SVM (Weston and Watkins, 1998) aim to
minimize a convex surrogate function of this loss.

Similar to the bipartite ranking case, by considering pairs (xy, xy′
) with

y′ ∈ Y \ {y}, constituted by the pairs xy of an example and its class, and the
pairs xy′

of the same examples with all other classes, the classifier of pairs f
associated to a function h ∈ H is defined by

f(xy, xy′
) = h(xy) − h(xy′

).

Then the empirical loss of a function h over T , can be written as the
classification error of the associated f ,

R̂S(f) = L̂T (h) =
1

n

∑
(xy,xy′ )∈S

1{zy,y′f(xy,xy′ )⩽0}, (4.4)

where S = {(xy, xy′
) : xy ∈ T, xy′ ∈ T, y ̸= y′} is of size n = m(K − 1), and

zy,y′ = 21{y>y′} − 1. In this case, an independent cover of the corresponding
dependency graph of S could be {(Ik, 1)}k∈{1,...,K−1}, where

Ik =
{(

x1
i , x

k+1
i

)
: i ∈ [m]

}
,

with the corresponding fractional chromatic number χf = K − 1.
Figure 8 illustrates a dependency graph for the multi-class classification

problem with m = 4 and K = 4 as well as the corresponding fractional
independent covers represented by dotted ellipsoids.
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Fig. 8: The dependency graph for the multi-class classification problem with
m = 4 examples and K = 4 classes is a vertex-disjoint union of 4 trianlges.
Fractional independent covers {(Ik, 1)}1⩽k⩽3 are shown by dotted ellipsoids.

Similar to the bipartite ranking case, we have the following corollary based
on the prior results.

Corollary 4.3. Let T be a training set of K-label instances and of size m.
Let S be the set of no-redundant pairs of examples from different classes in T .
Then for any scoring functions from F = {f : (x, x′) 7→ ⟨w, ϕ(x) − ϕ(x′)⟩ :
∥w∥ ⩽ B}, where ϕ is a feature mapping with the bounded norm such that
∥ϕ(x) − ϕ(x′)∥ ⩽ Γ for all (x, x′); and for any δ ∈ (0, 1), with probability at
least 1 − δ, we have

R(f) ⩽ R̂S(f) +
4BΓ√
m

+ 3

√
1
2m

log
(
2
δ

)
.

Remark 4.4. The loss function we considered (4.3) is normalized by K − 1,
and we obtain a result that is comparable to the binary classification case.
For a loss function based on margins, ℓ(y, h(xy)) = h(xy) − max

y′ ̸=y
h(xy′

); the

Rademacher complexity term grows in lockstep with the number of classes K.

4.3 Learning from m-dependent data

Here we consider learning from m-dependent data, and give a practical learning
scenario. Suppose that there are linearly aligned locations, for example, real
estate along a street. Let yi be the observation at location i, for example,
the house price. Let xi denote the random variable modeling geographical
effect at location i. Assume that x’s are mutually independent and each yi is
geographically influenced by a neighborhood of size at most 2q+1. The goal is
to learn to predict y from a sample {((xi−q, . . . , xi, . . . , xi+q), yi)}i∈[n], where
n is the size of the sample. See Figure 9 for an example.
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. . . xi−2 xi−1 xi xi+1 xi+2 xi+3 . . .

. . . yi yi+1 . . .

Fig. 9: Each observation yi is geographically determined by a set of variables
{xj}i−2⩽j⩽i+2 of size 5. The sample {({xj}i−2⩽j⩽i+2, yi)}i is 4-dependent.

This model accounts for the impact of local locations on house prices.
Similar scenarios are frequently considered in spatial econometrics, and moving
average processes in time series analysis, see Anselin (2013) for more examples.

The above application is a special case of m-dependence. A sequence of
random variables {Xi}ni=1 is said to be f(n)-dependent if subsets of variables
separated by some distance greater than f(n) are independent. This model
was introduced by Hoeffding and Robbins (1948) and has been studied exten-
sively (see, for example, Stein 1972; Chen 1975). This is usually the canonical
application for the results based on the dependency graph model. A special
case of f(n)-dependence when f(n) = m is the following m-dependent model.

Definition 4.5 (m-dependence, Hoeffding and Robbins 1948). A sequence of
random variables {Xi}ni=1 is m-dependent for some m ⩾ 1 if {Xj}ij=1 and
{Xj}nj=i+m+1 are independent for all i > 0.

G

F

Fig. 10: A tree-partition of the dependency graph for 2-dependent variables.

Figure 10 illustrates a dependency graph G for a 2-dependent sequence
{Xi}i, and its tree-partition. The illustration demonstrates the division of an
m-dependent sequence into blocks of size m. Subsequently, these blocks are
sequentially mapped to vertices of a path of length ⌈n/m⌉, as depicted in
Figure 10. This tree-partition shows that Λ(G) ⩽ (⌈n/m⌉ − 1) (m+m)2+m2 ⩽
4mn.

Combining Theorem 3.12 and the above estimate of forest complexity gives
the following.
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Corollary 4.6. Let S be an m-dependent sample of size n. Assume that the
learning algorithm A is βi-uniformly stable for any i ∈ [n − 2m,n]. Suppose
the loss function ℓ is bounded by M . For any δ ∈ (0, 1), with probability at
least 1 − δ, it holds that

R(fA
S ) ⩽ R̂S(fA

S ) + 2βn,2m(2m + 1) + (4nβn + M)

√
2m
n

log
(
1
δ

)
.

Choose any uniformly stable learning algorithm in Bousquet and Elisseeff
(2002) with βn = O(1/n), such as regularization algorithms in RKHS, etc.,
and apply to the above-mentioned house price prediction problem. Then for
any fixed q, with high probability, Corollary 4.6 gives that R(fA

S ) ⩽ R̂S(fA
S )+

O

(√
1
n

log
(
1
δ

))
for sufficiently large n, matching the stability bound in the

i.i.d. case in Bousquet and Elisseeff (2002).

5 Concluding remarks

In this survey, we presented various McDiarmid-type concentration inequali-
ties for functions of graph-dependent random variables. These concentration
bounds were then used to obtain generalization error bounds for learning from
graph-dependent samples via fractional Rademacher complexity and algorithm
stability.

We also included some real practical applications of the methodology. Note
that in our applications, the sample contains dependent data with the same
marginal distribution, but this is not necessary and concentration inequalities
derived are without this assumption, and therefore can be applied to situations
where the distribution may change over time.

The dependency graphs used for our applications exhibit certain structural
regularities and therefore we have explicit simple bounds. For applications
under various other settings, we can still obtain meaningful bounds as long
as we have suitable estimates of the fractional chromatic number or for-
est complexity. We will leave interested readers to investigate and find more
applications.

There are various new directions that can be explored.
1. For dependent data, there are other definitions of the generalization

error, such as the one specified in Mohri and Rostamizadeh (2008, 2010);
Kuznetsov and Mohri (2017). The connections between these and the one
we used have been discussed in (Mohri and Rostamizadeh, 2008, 2010). It
is a natural question whether our results can be adapted to this definition.

2. The dependency graph model we consider requires variables in disjoint non-
adjacent subgraphs to be independent. There are some newly introduced
dependency graph models such as weighted dependency graphs (Dousse and
Féray, 2019; Féray et al, 2018), and the combination of mixing coefficients
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and dependency graphs (Lampert et al, 2018; Isaev et al, 2021). It would
be interesting to use these new dependency graphs to obtain generalization
bounds for learning under different dependent settings.

3. Recently, there are some new breakthroughs establishing sharper stability
bounds (Feldman and Vondrak, 2019; Bousquet et al, 2020). It would be
interesting to follow these results and to obtain sharper stability bounds
for learning under graph-dependence.
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