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Loss function, Separating Hyperplanes, Canonical Hyperplan

Classifiers, Loss function

For binary classification
e Training Data: (x1,y1), -, (Xm,¥m) € X x {£1}

@ Objective
- To find a function f that will correctly classify unseen examples x,
f:X—+1
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Classifiers, Loss function

Correctness is measured by means of the error risk, composed of:

e Empirical risk (estimated on the training set)

Rams = 13 Yfx) i
emp = £ 5 X Yi
=
- For the zero-one loss function:
1
(., F(x)) = 1F(x) ~ y]
the loss is 0 if (x,y) is classified correctly, 1 otherwise

- Even if Remp[f] is zero on the training set, it may not generalize well on
unseen data
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Classifiers, Loss function

@ Error Risk (on new unknown observations)

Rl = [ 5176 =yl dPlx.y)

- P(x,y) generally unknown distribution,
- the problem remains to bound R[f] (structural risk minimization)
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Classifiers, Loss function

o Complexity

- It measures the capacity of a family of classifiers to isolate ("shatter")
observations

- VC-theory shows the need to restrict the set of functions f to the one
that have suitable complexity for the amount of training data

-For example, capacity of LDA < capacity of QDA

Linearly separable  clasifer Linearly non separable Linearly non separable
. .

Separating Hyperplane

Lower fleibiity,capacity
Higher flxibilty, capacity
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Classifiers, Loss function

Loss function

Error Risk = R[\

Underfiting region  : fopt Overfiting region
Optimal region

Error Risk = R[f] = Remp][f] + Complexity
1 K

b ¥
Error on = Erroron  + Regularization term on
Test set Training set the capacity of f
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Hyperplanes
H a dot vectorial space <, >
X1,...Xm m points of H

An hyperplan HP is defined:

{xeH/ <w,x>+b=0}weHbecR

<w,x>+b>0

4
<w,x>+b<0
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Separating Hyperplanes

- Binary classification
- Linearly separable points x1,...x, of H

Linearly separable <wx>+b=0

<wx>+b<0
L]

<wx>+b>0
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Canonical Hyperplan

Definition

The pair (w, b) is called a canonical hyperplan w.r.t. x1,...,xm € H, if it is scaled such that

min |[<w,x;>+b|=1 (1)

i=1...m

Linearly separable .

<wx>+b 3-

<wx3+b =0
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Canonical Hyperplan

Let Hpo, Hp+1 and Hp_1 be the three hyperplans as indicated in the above figure

Let x1, x2 be the closest points to Hpg (see Fig), then

<w,x1>+b=c>0
<w,x2>4+b=-c<0

multiply each equations by a scale factor a = % thus

I
-

a<w,x1>+ab = <w x'y1>+b =
a<w,x3>4ab = <w x3>4+b =-1
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Hard, Soft and v SVM

Canonical Hyperplan

Margin value

- The closest point to the hyperplan has a distance of ”—'},”

<w,x1>4+b = 1 (2)
<w,x2>4+b = -1 (3)
2
from (2)-(3) <w,(x1—x2) >=2>and < ﬁ (a—x2)>= o (@)
w

gives the orthogonal projection of (x1 — x2) onto the line of direction w. The distance of the
closest point to the hyperplan (margin m) is then:

Remark: To best separate the classes, the problem becomes to determine the hyperplan that
maximizes the margine m (i.e. minimizes ||w/||)
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Hard-margin Support Vector Machine

Let (x1,y1), ..., (Xm, ym) be m points, x; € H
Assume a binary classification of linearly separable points (non separable to see later)

Let HP be a separable hyperplan of direction w

The trick: y; = +1 (vs. y; = —1) for points belonging to the side of direction w (vs.
opposite direction to w)

The decision function f,, ;, that gives the class label of a given x

fw b(x) = sign(< w,x > +b) = {+1/or — 1}
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Hard-margin Support Vector Machine

SVM: Primal formalisation

- Among the set of separating hyperplans, the optimal HP is the one that maximizes the

margin

- The problem can be formalized as a convex (unique solution) and quadratic optimization

problem s.t. linear inequalities

1
min 7||w||2
weH, beR 2
s.t. yi(<K xjyw>+b)>1 Vi=1,...m

The associated Lagrangian £ to minimize w.r.t. w and b, to maximize w.r.t. «;

1 m
Lw,b,a) = Z|w|® = ai(yi(< xj,w > +b) — 1)
2 i=1
SVM November 19, 2018
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Hard-margin Support Vector Machine

The derivatives BT‘: and % leads to

m m
E aiyi=0 w= E QiyiXi
i=1 i=1

@ Vx; with o; > 0,
- x; define a support vector
- x; contributes to define the optimal plan
- x; involves on the canonical hyperplans
- x; contributes for the decision function

@ Vx; with a; =0
- x; not considered for the decision function (sparsity)

Note that:

VIE{l,,m} Qi (y,(<X,,W>+b)*1):o
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Hard, Soft and v SVM

Hard-margin Support Vector Machine: Dual formalization

By substituting and replacing equations (7) in the Lagrangian given in (6) we obtain the SVM

Dual formalization

m
1
max o — = aj oy Yy < Xi,Xj >
e Zl ZZ: i Yi Yj is Xj
i=1 ij
s.t. a;>0,i=1,....m

m
D aiyi=0
i=1
The decision function

f(x) = sign <Z ajyi < X,Xj> +b>

i=1

For x; limited to the support vectors.
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Soft-margin vs. Hard-margin SVM

- If non linearly separable data, there is no hard-margin solution

- Either linearly separable, hard-margin suffers of over fitting (Rgmp ~ 0) and worst
generalization properties (high risk R)

- To ensure good generalization properties with lower R, one needs to find a larger margin
and tolerate some samples to be within the margin or either miss-classified

- A regularization is thus used to relax on the empirical risk but by improving the
generalization risk R = Remp + complexity

- For this, slack variables &; are introduced to formalize the soft-margin SVM.
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Soft-margin SVM

Primal formalization

1 C &
. 2
d hd 4 10
weH,gglngf",beR 2HWH * m ;f, ( )
s.t. yi(K xjyw>+b)>1-¢ Vi=1..m

&>0 Vi=1,...m

Linearly separable
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Soft-margin SVM

*HWH2+C ZS, (11)

min
weEH,EERM bER

s.t. y,'(< Xi,w > +b) 2 1-¢ Vi=1,...m
>0 Vi=1,..,m

Some intuitions (1)

- Y x; that is far from the margin and lying in the good side, the 2"¢ constraint is always
satisfied as y; (< xj, w > +b) > 1 and &; which is not needed is set to 0 to minimize Eq.
(11).

-V x; which is within the margin or lies in the wrong side, the constraint
yi (< xj,w > +b) > 1 is violated, and & > 0 is involved to have a solution.
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Soft-margin SVM

Some intuitions(2)
- The right term, called the hing-loss, measures the empirical risk induced by all the
samples with & >0
- The left term, called the regularization term, measures the complexity or the capacity of
the model.
- The decrease of the left term, increases the margin, that decreases the capacity of the
model and increases the hing-loss
- The minimization problem is a compromise, balanced by C, between the two left
(complexity) / right (empirical risk) conflicting terms
Loss function

1

1 1 &
Risk= Zlwl| + € — 3¢ 2
P2 m £ Slwll

i

Complexity (i.e. capacity of f)

1
Remp= Zi.
=1
f
T
c=~o0 c C = oo
higher margin Lower margin
Soft-margin SYM Hard-margin SVM
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Soft-marginSVM: Dual formalization

m
1
arg:ﬁ{);] Za,— -5 Za,— Yy < Xj,Xxj > (12)
i=1 ij
C
s.t. 0<ea;<—,i=1..,m
m

m
Zaf yi=0
i1

Remarks:

- The constraint o; < % ensures to bound the weight of a given support vector, to avoid
over fitting, or that an outlier support vector takes too much importance in the decision
function
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Hard, Soft and v SVM

v-SVM

Some intuitions
- The parameter C in the soft margin-SVM is a compromise between the conflicting terms

complexity and empirical risk
- Unfortunately we have no intuition about the meaning of C w.r.t. the data
- v-SVM allows to substitute C by the parameter v related to:

— The number of errors
— The number of support vectors

Primal formalization

1, 1 &
min —||w —vp 4+ — i 13
weH,£ER™ bER, pER 2H I Py ;5, (13)
s.t. yi(<K xj,w>+b)>p—¢& Vi=1..m
&>0 Vi=1,..,m
p=0
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v-SVM

Interpretation of p

2p

@ The classes are separated by a margin of Twiz

@ v €[0,1] is a upper bound of the proportion of samples lying within the margin or in the
wrong side (called the fraction of margin errors)

© v is a lower bound of the proportion of support vectors

Remarks:
- The upper bound controls the sparsity (minimal number of support vectors)
- The lower bound controls the model precision (namely the maximal margin errors)

- The increase of v increases the margin, that allows the increase of the margin errors
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Multi-class SVM

v-SVM

Dual formalization

max
aeRM

s.t.

Ahlame Douzal AMA-LIG, Université Gr

1
—5 Za; o yiyj < Xi,Xj >
ij

0<a; < i=1,....m

1
m

m
D aiyi=0
i=1

m

> ai>0
i=1

SVM
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Multi-class SVM

Let S ={(x;,yi) i=1,..m}, y; € {1,..., K}. Two main approaches exist to deal with SMV on

multi-classes.

1- One versus all approach

@ Generate K training sets Sy, ..., Sk:
Sk = {(x,-,y,-k) i=1,..,m}
yE=41ifyi=k yk=—-1ify#k
@ For each training set Sy learn a binary SVM, with

m
Zai Yi < Xj,x > +b

i

0y
=
=
x
=
Il

-
X
—
x
~
|

= sign(g"(x)) the decision function

© Classification of a new sample x*
- Estimate g/(x*) = max(g'(x*), ..., g¥(x*))

- The class label is given by f(x*) = sign(g’(x*))
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Multi-class SVM: One versus all approach

Remarks

- For g/(x*) > 0, assign x* to the jth class, otherwise the only decision is that x* is not in
the jth class

- Some samples may not be classified (for instance, g/(x*) < 0, many nearest maximal
values for g)

- The K SVM's are trained on different sets (Si, ..., Sk) with functions g, ..., g/ varying
within different variation domains (non comparable), not suitable use of the max on the
decision function

- Unbalanced classes in the training sets (Si, ..., Sk) small size for +1 larger for -1
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Multi-class SVM: pairwise approach

2- Pairwise approach

@ Generate K(K — 1) Training sets for each couple of classes S;, S;
@ Learn a binary SVM per couple of classes, with gj; the learned decision function
© Assign a new sample x* by a majority vote through the K(K — 1) decision functions
fij(x*) = sign(g;(x*))
Remarks
- It leads to much more trained classifiers (limited if a large number of classes)
- The induced classes are expected to be smaller and more balanced

- We expect lower number of support vectors than for the One versus all approach
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Support Vector Regression (SVR)

- Rather than dealing with outputs outputs y = {£1} in classification, regression
estimation is concerned with estimating real-valued functions (y € R)

- SVR generalizes SV algorithm to the regression case

- SVR allows the estimation of the regression function by involving a part of the training
(sparsity)

- The regression function is rarely linear; however, similarly to SVM, we first give the primal
and dual formalizations for the case of a linear regression function, and show after how to
extend the results to non linear regression
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Support Vector Regression (SVR)

Definition

Let (x;,y;) i=1,...,m, y; € R, the aim of SVR is the estimation of y = f(x) that minimizes
the e-insensitive Loss-function Rf__-mp:

Remp = f(x) = yle = max(0,|f(x) — y| =€)

Remarks
- The intuition behind the empirical risk is to be equal to O for an estimation error lower
than € and |f(x) — y| — e if it is higher
- Case of estimating a linear regression function f(x) =< w,x > +b

- Similarly, it remains to minimize RE to not over fit maximize € (i.e., the margin)

Emp’
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Support Vector Regression (e — SVR)

Primal formalization

m

. 1 1
min SIwli + C= > (& +¢) (15)
weH, () eR™ beR 2 m =
s.t. (<X,‘,W>+b)—y,'S€+§,' \V/’:177m

yi — (< xi,w > +b) <e+&F
£f»£7 Z 0 Vi= 1,...,m
(16)
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e-sensitive and v SVR

e — SVR: Primal formalization

m

. 1 1
min SIwli + C= > (6 +¢) (17)
weH, () eR™ beR 2 m =
s.t. (<X,‘,W>+b)—_y,'S€+£,' \V/I:177m

yi— (< xj,w > +b) <e+&f
£, >0 Vi=1,..,m

- For the samples with y; above the tube, £ > 0 (§; = 0), samples are underestimated

(f(xi) < i)

- For the samples with y; under the tube, & > 0 (£ = 0), samples are overestimated
(F(xi) > yi)

- For the remaining samples within the tube, £ = £; = 0, samples are well estimated
(If(xi) —yil <€)
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e — SVR

Some intuitions

1

- ¢ defines the margin around f(x): ¢ = Twi?

- Higher is ¢, lower is |w||2, and lower is the precision of the regression model
- Higher is ¢, smoother is f(x) and lower is the complexity of the model
- Lower is €, less smoothed is f(x), higher is the complexity, but higher is the risk to overfit

- For e~ 0, the model is a hard linear regression (without a tube €)
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€ — SVR: Dual formalization

Introducing Lagrange multipliers, on the primal form Eq. (17), one arrives at the following

optimization problem (C and e selected a priori)

max
a,a* eRM

s.t.

The regression estimate

Ahlame Douzal AMA-LIG, Université Gri

m m

—e> (af +a) + Y (af —ai)yi

i=1 i=1
1 m
-5 (af —aj)(af — o) < xj,x; >
i
C
0§a7‘,o¢,<; Vi=1,...m
m
Z(al - O{l)
i=1
m
= Z(a, — ;) < Xj,x > +b
i=1
m
= Z(O‘T —aj) x;
i=1
SVM November 19, 2018

(18)

(19)

33 / 43



€ — SVR: Dual formalization

Remarks

- af and «; correspond to the weights of the support vectors that are, respectively, above,
under the tube

- The support vectors (SV) are those samples with a* > 0 or a; > 0
Computing the Offset b

- To estimate b we refer to the KKT(Karush-Kuhn-Tucker) conditions that state that at the
point of the solution, the product between the dual variables and constraints has to vanish

aj(e+& —yi+ <w,x; >+b) =0 (20)

ajle+& +yi— <w,x;>—-b)=0 (21)
C C

(= —a)&i=0 (= —aj)§ =0 (22)
m m
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€ — SVR: Dual formalization

Useful derived conclusions
- Only samples (xj, ;) that lie outside the tube have ag*) = % (as 51(*) =0)
- ajaf =0 (as the j — th SV is either above or under the tube)
- cxg*) € [o, %] flg*) = 0, that is only for SV's that lie within the tube

Thus the Offset b is,

C

b = yi—<w,x;>—e for aj €(0,—)
m

N C

b = yi—<w,x;>+e for of € (0,—)
m

Remark

*)

- This means, that any Lagrange multipliers o;"” € (0, %) can be used to estimate b, it is

safest to use one that is not too close to 0 or %
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v — SVR

- € of the e — SVR is usfull if the desired accuracy can be specified beforhand

- In some cases, however, we just one to estimate y to be as accurate as possible without
specifying an a priori level of accuracy

- For this, we refer to the v — SVR that allows to compute automatically €

Primal formalization

min 1HWH2 +C (1/( + ) (23)
weH,£(*) ERM beR,c€R 2
s.t. (< xj,w>+b)—y; <e+& Vi=1,...m
yi— (< xj,w > +b) <e+¢&F
&, >0

Intuitions
- If € increases, the green term decreases (as less samples outside the tube), the function
smoothness increases and the accuracy decreases

- If € decreases, the brown term decreases, but the green term increases (as more samples
outside the tube), the function is less smoothed and the the accuracy increases
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v — SVR: Dual formalization

m m
1
a,glanRm ;(a;‘ —a)yi — 5 Z(a,* —ai)(ef — o) < xj,xj >
i= i
s.t. 0<a;,0;<— Vi=1,...m
m
m
D (af —ai)
i=1
m
> (af +ai) < Cw (24)
i=1
The regression estimate
m
f(x) = Z(oz?F —aj) < xj,x > +b (25)
i=1

m
w = Z(O&f — Ot,') X
i=1
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v — SVR:

Interpretation of the a priori fixed v € [0, 1]

The fraction of samples outside the tube(margin errors) < v < The fraction of support vectors

- The upper bound controls the sparsity (minimal number of support vectors)
- The lower bound controls the model accuracy (namely the maximal margin errors)
- The increase of v increases the margin, that increases the margin errors

- If v increases, this allows for more samples outside the tube, appeals for more precision by
decreasing € and increasing the number of SV

- If v decreases, this allows less samples outside the tube, it appeals for less precision and
more sparsity by increasing e and decreasing the number of SV
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SVM and SVR: Non linearly separable data

- The above hard, soft, or v SVM/SVR are developed for the case of linearly separable data

- To deal with non linearly separable data, the trick consists to embed data into high
dimension space (called feature space), rendering the data linearly separable and the
developed approaches applicable

- This is possible, by substituting all the cross-product used in the results by a kernel
similarity measure (kernel trick)

Initial Space Feature Space

Linearly non separable Linearly separable

< ®(x;), Pg) >= K(x;, ;)
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Standard Kernels

- Polynomial: k(x,x’) =< x,x’ >
- Gaussian: k(x,x’) = exp(—“xzzié,u)
- Sigmoid: tanh(x(x,x’) + ©)

with suitable choices of d € N, 0,k,© € R empirically led to SV classifiers with similar
accuracies as SV sets
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Kernels and temporal kernels

Temporal Kernels

@ The Global Alignment Kga kernel (Cuturi et al. 2011) is defined as the exponentiated
soft-minimum of all alignment distances:

DTW = in D
WET(Ir?m) oy ()

DXJ = Z‘p(xw;l y772 )

Kealx,y) = Z e D™

wEA(n,m)
|
= > T kCeny(iy Ymatiy)

TEA(n,m) i=1

where k = exp~ ¥ a local similarity induced from the divergence ¢
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Kernels and temporal kernels

Temporal Kernels

@ DTW kernel Kpryy (Haasdonk et al. 2004) a pseudo n.d. kernel

Kotw(x,y) = e iPTW)

@ DTW kernel DTW,. with Sakoe-Chiba Constraints

DTWec(xy) = min  Diy(m)
with «; ; defined as:
Yij = 17 Ifll—_jl <T

oo, otherwise
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Kernels and temporal kernels

Temporal Kernels

@ Dynamic Temporal Alignement Kernel Kprak (Shimodaira et al. 2002) consider a variant

of the DTW to define the pseudo p.d. kernel
|7

DTWDTAK(Xa y) = MaXXrecA(n,m) Zko'(xﬁl(i)zyﬂ'z(i))
i=1
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