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Loss function, Separating Hyperplanes, Canonical Hyperplan

Classifiers, Loss function

For binary classification
Training Data: (x1, y1), ..., (xm, ym) ∈ X × {±1}
Objective

- To find a function f that will correctly classify unseen examples x ,
f : X → ±1
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Classifiers, Loss function

Correctness is measured by means of the error risk, composed of:
Empirical risk (estimated on the training set)

Remp =
1
m

m∑
i=1

1
2
|f (x i )− yi |

- For the zero-one loss function:

c(x , y , f (x)) =
1
2
|f (x)− y |

the loss is 0 if (x , y) is classified correctly, 1 otherwise

- Even if Remp[f ] is zero on the training set, it may not generalize well on
unseen data
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Classifiers, Loss function

Error Risk (on new unknown observations)

R[f ] =

∫
1
2
|f (x)− y | dP(x , y)

- P(x , y) generally unknown distribution,
- the problem remains to bound R[f ] (structural risk minimization)
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Classifiers, Loss function

Complexity

- It measures the capacity of a family of classifiers to isolate ("shatter")
observations
- VC-theory shows the need to restrict the set of functions f to the one
that have suitable complexity for the amount of training data
-For example, capacity of LDA < capacity of QDA
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Classifiers, Loss function
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Hyperplanes

H a dot vectorial space <,>
x1, ...xm m points of H
An hyperplan HP is defined:

{x ∈ H / < w , x > +b = 0} w ∈ H, b ∈ R
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Separating Hyperplanes

- Binary classification
- Linearly separable points x1, ...xm of H
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Canonical Hyperplan

Definition
The pair (w , b) is called a canonical hyperplan w.r.t. x1, ..., xm ∈ H, if it is scaled such that

min
i=1...m

|< w , x i > +b| = 1 (1)
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Loss function, Separating Hyperplanes, Canonical Hyperplan

Canonical Hyperplan

Let Hp0, Hp+1 and Hp−1 be the three hyperplans as indicated in the above figure

Let x1, x2 be the closest points to Hp0 (see Fig), then

< w , x1 > +b = c > 0

< w , x2 > +b = −c < 0

multiply each equations by a scale factor α = 1
c
, thus

α < w , x1 > +α b = < w ′, x′
1 > +b′ = 1

α < w , x2 > +α b = < w ′, x′
2 > +b′ = −1
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Hard, Soft and ν SVM

Canonical Hyperplan

Margin value
- The closest point to the hyperplan has a distance of 1

‖w‖

< w , x1 > +b = 1 (2)

< w , x2 > +b = −1 (3)

from (2)-(3) < w , (x1 − x2) >= 2 > and <
w
‖w‖

, (x1 − x2) >=
2
‖w‖

(4)

gives the orthogonal projection of (x1 − x2) onto the line of direction w . The distance of the
closest point to the hyperplan (margin m) is then:

m =
1
‖w‖

Remark: To best separate the classes, the problem becomes to determine the hyperplan that
maximizes the margine m (i.e. minimizes ‖w‖)
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Hard, Soft and ν SVM

Hard-margin Support Vector Machine

Let (x1, y1), ..., (xm, ym) be m points, x i ∈ H

Assume a binary classification of linearly separable points (non separable to see later)

Let HP be a separable hyperplan of direction w

The trick: yi = +1 (vs. yi = −1) for points belonging to the side of direction w (vs.
opposite direction to w)

The decision function fw,b that gives the class label of a given x

fw,b(x) = sign(< w , x > +b) = {+1/or − 1}
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Hard, Soft and ν SVM

Hard-margin Support Vector Machine

SVM: Primal formalisation
- Among the set of separating hyperplans, the optimal HP is the one that maximizes the
margin

- The problem can be formalized as a convex (unique solution) and quadratic optimization
problem s.t. linear inequalities

min
w∈H,b∈R

1
2
‖w‖2 (5)

s.t. yi (< x i ,w > +b) ≥ 1 ∀i = 1, ...,m

The associated Lagrangian L to minimize w.r.t. w and b, to maximize w.r.t. αi

L(w , b, α) =
1
2
‖w‖2 −

m∑
i=1

αi (yi (< x i ,w > +b)− 1) (6)
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Hard, Soft and ν SVM

Hard-margin Support Vector Machine

The derivatives ∂L
b

and ∂L
w leads to

m∑
i=1

αiyi = 0 w =
m∑
i=1

αiyix i (7)

∀x i with αi > 0,

- x i define a support vector
- x i contributes to define the optimal plan
- x i involves on the canonical hyperplans
- x i contributes for the decision function

∀x i with αi = 0

- x i not considered for the decision function (sparsity)

Note that:

∀ i ∈ {1, ...,m} αi (yi (< x i ,w > +b)− 1) = 0
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Hard, Soft and ν SVM

Hard-margin Support Vector Machine: Dual formalization

By substituting and replacing equations (7) in the Lagrangian given in (6) we obtain the SVM
Dual formalization

max
α∈Rm

m∑
i=1

αi −
1
2

∑
i,j

αi αj yi yj < x i , x j > (8)

s.t. αi ≥ 0 , i = 1, ...,m
m∑
i=1

αi yi = 0

The decision function

f (x) = sign

(
m∑
i=1

αi yi < x , x i > +b

)
(9)

For x i limited to the support vectors.
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Hard, Soft and ν SVM

Soft-margin vs. Hard-margin SVM

- If non linearly separable data, there is no hard-margin solution

- Either linearly separable, hard-margin suffers of over fitting (REmp ; 0) and worst
generalization properties (high risk R)

- To ensure good generalization properties with lower R, one needs to find a larger margin
and tolerate some samples to be within the margin or either miss-classified

- A regularization is thus used to relax on the empirical risk but by improving the
generalization risk R = Remp + complexity

- For this, slack variables ξi are introduced to formalize the soft-margin SVM.
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Hard, Soft and ν SVM

Soft-margin SVM
Primal formalization

min
w∈H,ξ∈Rm,b∈R

1
2
‖w‖2 +

C

m

m∑
i=1

ξi (10)

s.t. yi (< x i ,w > +b) ≥ 1− ξi ∀i = 1, ...,m

ξi ≥ 0 ∀i = 1, ...,m
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Hard, Soft and ν SVM

Soft-margin SVM

min
w∈H,ξ∈Rm,b∈R

1
2
‖w‖2 + C

1
m

m∑
i=1

ξi (11)

s.t. yi (< x i ,w > +b) ≥ 1− ξi ∀i = 1, ...,m

ξi ≥ 0 ∀i = 1, ...,m

Some intuitions (1)
- ∀ x i that is far from the margin and lying in the good side, the 2nd constraint is always
satisfied as yi (< x i ,w > +b) ≥ 1 and ξi which is not needed is set to 0 to minimize Eq.
(11).

- ∀ x i which is within the margin or lies in the wrong side, the constraint
yi (< x i ,w > +b) ≥ 1 is violated, and ξi > 0 is involved to have a solution.
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Hard, Soft and ν SVM

Soft-margin SVM
Some intuitions(2)

- The right term, called the hing-loss, measures the empirical risk induced by all the
samples with ξi > 0

- The left term, called the regularization term, measures the complexity or the capacity of
the model.

- The decrease of the left term, increases the margin, that decreases the capacity of the
model and increases the hing-loss

- The minimization problem is a compromise, balanced by C , between the two left
(complexity) / right (empirical risk) conflicting terms
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Hard, Soft and ν SVM

Soft-marginSVM: Dual formalization

max
α∈Rm

m∑
i=1

αi −
1
2

∑
i,j

αi αj yi yj < x i , x j > (12)

s.t. 0 ≤ αi ≤
C

m
, i = 1, ...,m

m∑
i=1

αi yi = 0

Remarks:

- The constraint αi ≤ C
m

ensures to bound the weight of a given support vector, to avoid
over fitting, or that an outlier support vector takes too much importance in the decision
function
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Hard, Soft and ν SVM

ν-SVM

Some intuitions
- The parameter C in the soft margin-SVM is a compromise between the conflicting terms
complexity and empirical risk

- Unfortunately we have no intuition about the meaning of C w.r.t. the data

- ν-SVM allows to substitute C by the parameter ν related to:
– The number of errors
– The number of support vectors

Primal formalization

min
w∈H,ξ∈Rm,b∈R,ρ∈R

1
2
‖w‖2 − ν ρ +

1
m

m∑
i=1

ξi (13)

s.t. yi (< x i ,w > +b) ≥ ρ− ξi ∀i = 1, ...,m

ξi ≥ 0 ∀i = 1, ...,m

ρ ≥ 0
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Hard, Soft and ν SVM

ν-SVM

Interpretation of ρ
1 The classes are separated by a margin of 2ρ

‖w‖2

2 ν ∈ [0, 1] is a upper bound of the proportion of samples lying within the margin or in the
wrong side (called the fraction of margin errors)

3 ν is a lower bound of the proportion of support vectors

Remarks:

- The upper bound controls the sparsity (minimal number of support vectors)

- The lower bound controls the model precision (namely the maximal margin errors)

- The increase of ν increases the margin, that allows the increase of the margin errors
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Multi-class SVM

ν-SVM

Dual formalization

max
α∈Rm

−
1
2

∑
i,j

αi αj yi yj < x i , x j > (14)

s.t. 0 ≤ αi ≤
1
m
, i = 1, ...,m

m∑
i=1

αi yi = 0

m∑
i=1

αi ≥ 0
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Multi-class SVM

Multi-class SVM

Let S = {(x i , yi ) i = 1, ...m}, yi ∈ {1, ...,K}. Two main approaches exist to deal with SMV on
multi-classes.

1- One versus all approach
1 Generate K training sets S1, ..., SK :

Sk = {(x i , y
k
i ) i = 1, ...,m}

yk
i = +1 if yi = k yk

i = −1 if yi 6= k

2 For each training set Sk learn a binary SVM, with

gk (x) =
m∑
i

αi yi < x i , x > +b

f k (x) = sign(gk (x)) the decision function

3 Classification of a new sample x∗

- Estimate g j (x∗) = max(g1(x∗), ..., gK (x∗))
- The class label is given by f (x∗) = sign(g j (x∗))
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Multi-class SVM

Multi-class SVM: One versus all approach

Remarks
- For g j (x∗) > 0, assign x∗ to the jth class, otherwise the only decision is that x∗ is not in
the jth class

- Some samples may not be classified (for instance, g j (x∗) < 0, many nearest maximal
values for g)

- The K SVM’s are trained on different sets (S1, ..., SK ) with functions g1, ..., gK varying
within different variation domains (non comparable), not suitable use of the max on the
decision function

- Unbalanced classes in the training sets (S1, ..., SK ) small size for +1 larger for -1
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ε-sensitive and ν SVR

Multi-class SVM: pairwise approach

2- Pairwise approach

1 Generate K(K − 1) Training sets for each couple of classes Si , Sj

2 Learn a binary SVM per couple of classes, with gij the learned decision function
3 Assign a new sample x∗ by a majority vote through the K(K − 1) decision functions

fij (x∗) = sign(gij (x∗))

Remarks
- It leads to much more trained classifiers (limited if a large number of classes)

- The induced classes are expected to be smaller and more balanced

- We expect lower number of support vectors than for the One versus all approach
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ε-sensitive and ν SVR

Support Vector Regression (SVR)

- Rather than dealing with outputs outputs y = {±1} in classification, regression
estimation is concerned with estimating real-valued functions (y ∈ R)

- SVR generalizes SV algorithm to the regression case

- SVR allows the estimation of the regression function by involving a part of the training
(sparsity)

- The regression function is rarely linear; however, similarly to SVM, we first give the primal
and dual formalizations for the case of a linear regression function, and show after how to
extend the results to non linear regression
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ε-sensitive and ν SVR

Support Vector Regression (SVR)

Definition

Let (x i , yi ) i = 1, ...,m, yi ∈ R, the aim of SVR is the estimation of ŷ = f (x) that minimizes
the ε-insensitive Loss-function RεEmp :

RεEmp = |f (x)− y |ε = max(0, |f (x)− y | − ε)

Remarks
- The intuition behind the empirical risk is to be equal to 0 for an estimation error lower
than ε and |f (x)− y | − ε if it is higher

- Case of estimating a linear regression function f (x) =< w , x > +b

- Similarly, it remains to minimize RεEmp , to not over fit maximize ε (i.e., the margin)
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ε-sensitive and ν SVR

Support Vector Regression (ε− SVR)

Primal formalization

min
w∈H,ξ(∗)∈Rm,b∈R

1
2
‖w‖2 + C

1
m

m∑
i=1

(ξi + ξ∗i ) (15)

s.t. (< x i ,w > +b)− yi ≤ ε+ ξi ∀i = 1, ...,m

yi − (< x i ,w > +b) ≤ ε+ ξ∗i

ξi , ξ
∗
i ≥ 0 ∀i = 1, ...,m

(16)
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ε-sensitive and ν SVR

ε− SVR : Primal formalization

min
w∈H,ξ(∗)∈Rm,b∈R

1
2
‖w‖2 + C

1
m

m∑
i=1

(ξi + ξ∗i ) (17)

s.t. (< x i ,w > +b)− yi ≤ ε+ ξi ∀i = 1, ...,m

yi − (< x i ,w > +b) ≤ ε+ ξ∗i

ξi , ξ
∗
i ≥ 0 ∀i = 1, ...,m

- For the samples with yi above the tube, ξ∗i > 0 (ξi = 0), samples are underestimated
(f (x i ) < yi )

- For the samples with yi under the tube, ξi > 0 (ξ∗i = 0), samples are overestimated
(f (x i ) > yi )

- For the remaining samples within the tube, ξ∗i = ξi = 0, samples are well estimated
(|f (x i )− yi | ≤ ε)
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ε-sensitive and ν SVR

ε− SVR

Some intuitions
- ε defines the margin around f (x): ε = 1

‖w‖2

- Higher is ε, lower is ‖w‖2, and lower is the precision of the regression model

- Higher is ε, smoother is f (x) and lower is the complexity of the model

- Lower is ε, less smoothed is f (x), higher is the complexity, but higher is the risk to overfit

- For ε ; 0, the model is a hard linear regression (without a tube ε)
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ε-sensitive and ν SVR

ε− SVR : Dual formalization
Introducing Lagrange multipliers, on the primal form Eq. (17), one arrives at the following
optimization problem (C and ε selected a priori)

max
α,α∗∈Rm

− ε
m∑
i=1

(α∗i + αi ) +
m∑
i=1

(α∗i − αi )yi (18)

−
1
2

m∑
i,j

(α∗i − αi )(α∗j − αj ) < x i , x j >

s.t. 0 ≤ α∗i , αi ≤
C

m
∀ i = 1, ...,m

m∑
i=1

(α∗i − αi )

The regression estimate

f (x) =
m∑
i=1

(α∗i − αi ) < x i , x > +b (19)

w =
m∑
i=1

(α∗i − αi ) x i
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ε-sensitive and ν SVR

ε− SVR : Dual formalization

Remarks
- α∗i and αi correspond to the weights of the support vectors that are, respectively, above,
under the tube

- The support vectors (SV ) are those samples with α∗i > 0 or αi > 0

Computing the Offset b

- To estimate b we refer to the KKT(Karush-Kuhn-Tucker) conditions that state that at the
point of the solution, the product between the dual variables and constraints has to vanish

αi (ε+ ξi − yi+ < w , x i > +b) = 0 (20)

αi (ε+ ξ∗i + yi− < w , x i > −b) = 0 (21)

(
C

m
− αi )ξi = 0 (

C

m
− α∗i )ξ∗i = 0 (22)
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ε-sensitive and ν SVR

ε− SVR : Dual formalization

Useful derived conclusions

- Only samples (x i , yi ) that lie outside the tube have α(∗)
i = C

m
(as ξ(∗)

i = 0)

- αi α
∗
i = 0 (as the i − th SV is either above or under the tube)

- α
(∗)
i ∈ [0, C

m
], ξ(∗)

i = 0, that is only for SV ′s that lie within the tube

Thus the Offset b is,

b = yi− < w , x i > −ε for αi ∈ (0,
C

m
)

b = yi− < w , x i > +ε for α∗i ∈ (0,
C

m
)

Remark
- This means, that any Lagrange multipliers α(∗)

i ∈ (0, C
m

) can be used to estimate b, it is
safest to use one that is not too close to 0 or C

m
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ε-sensitive and ν SVR

ν − SVR

- ε of the ε− SVR is usfull if the desired accuracy can be specified beforhand

- In some cases, however, we just one to estimate y to be as accurate as possible without
specifying an a priori level of accuracy

- For this, we refer to the ν − SVR that allows to compute automatically ε

Primal formalization

min
w∈H,ξ(∗)∈Rm,b∈R,ε∈R

1
2
‖w‖2 + C

(
νε+

1
m

m∑
i=1

(ξi + ξ∗i )

)
(23)

s.t. (< x i ,w > +b)− yi ≤ ε+ ξi ∀i = 1, ...,m

yi − (< x i ,w > +b) ≤ ε+ ξ∗i

ξi , ξ
∗
i ≥ 0

Intuitions
- If ε increases, the green term decreases (as less samples outside the tube), the function
smoothness increases and the accuracy decreases

- If ε decreases, the brown term decreases, but the green term increases (as more samples
outside the tube), the function is less smoothed and the the accuracy increases
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ε-sensitive and ν SVR

ν − SVR : Dual formalization

max
α,α∗∈Rm

m∑
i=1

(α∗i − αi )yi −
1
2

m∑
i,j

(α∗i − αi )(α∗j − αj ) < x i , x j >

s.t. 0 ≤ α∗i , αi ≤
C

m
∀ i = 1, ...,m

m∑
i=1

(α∗i − αi )

m∑
i=1

(α∗i + αi ) ≤ C .ν (24)

The regression estimate

f (x) =
m∑
i=1

(α∗i − αi ) < x i , x > +b (25)

w =
m∑
i=1

(α∗i − αi ) x i
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Kernels and temporal kernels

ν − SVR :

Interpretation of the a priori fixed ν ∈ [0, 1]

The fraction of samples outside the tube(margin errors) ≤ ν ≤ The fraction of support vectors

- The upper bound controls the sparsity (minimal number of support vectors)

- The lower bound controls the model accuracy (namely the maximal margin errors)

- The increase of ν increases the margin, that increases the margin errors

- If ν increases, this allows for more samples outside the tube, appeals for more precision by
decreasing ε and increasing the number of SV

- If ν decreases, this allows less samples outside the tube, it appeals for less precision and
more sparsity by increasing ε and decreasing the number of SV
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Kernels and temporal kernels

SVM and SVR: Non linearly separable data

- The above hard, soft, or ν SVM/SVR are developed for the case of linearly separable data
- To deal with non linearly separable data, the trick consists to embed data into high
dimension space (called feature space), rendering the data linearly separable and the
developed approaches applicable

- This is possible, by substituting all the cross-product used in the results by a kernel
similarity measure (kernel trick)
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Kernels and temporal kernels

Standard Kernels

- Polynomial: k(x , x′) =< x , x′ >d

- Gaussian: k(x , x′) = exp(− ‖x−x′‖
2σ2 )

- Sigmoid: tanh(κ(x , x′) + Θ)

with suitable choices of d ∈ N, σ, κ,Θ ∈ R empirically led to SV classifiers with similar
accuracies as SV sets
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Kernels and temporal kernels

Temporal Kernels

The Global Alignment KGA kernel (Cuturi et al. 2011) is defined as the exponentiated
soft-minimum of all alignment distances:

DTW = min
π∈A(n,m)

Dx,y (π)

Dx,y =

|π|∑
i=1

ϕ(xπ1(i), yπ2(i))

KGA(x, y) =
∑

π∈A(n,m)

e−Dx,y (π)

=
∑

π∈A(n,m)

|π|∏
i=1

k(xπ1(i), yπ2(i))

where k = exp−ϕ a local similarity induced from the divergence ϕ
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Kernels and temporal kernels

Temporal Kernels

DTW kernel KDTW (Haasdonk et al. 2004) a pseudo n.d. kernel

KDTW (x, y) = e−
1
t
DTW (x,y)

DTW kernel DTWsc with Sakoe-Chiba Constraints

DTWsc (x, y) = min
π∈A(n,m)

Dγx,y(π)

with γi,j defined as:

γi,j = 1, if|i − j | < T

∞, otherwise
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Kernels and temporal kernels

Temporal Kernels

Dynamic Temporal Alignement Kernel KDTAK (Shimodaira et al. 2002) consider a variant
of the DTW to define the pseudo p.d. kernel

DTWDTAK (x, y) = max xπ∈A(n,m)

|π|∑
i=1

kσ(xπ1(i), yπ2(i))
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