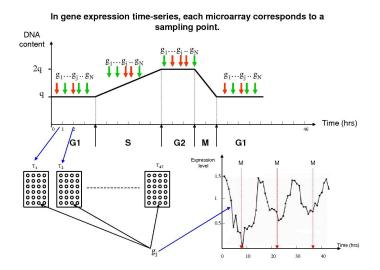
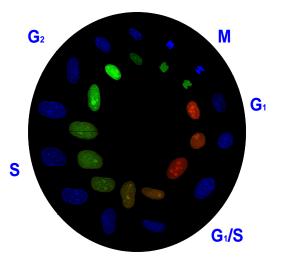

Time Series Clustering: application on cell cycle genes expression profiles

Ahlame Douzal (Ahlame.Douzal@imag.fr)

AMA, LIG, Université Joseph Fourier Master 2R - MOSIG (2011)


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem statement


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Gene expression data and cell cycle division

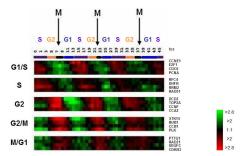
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Problem statement

<□> <□> <□> <□> <=> <=> <=> <=> <=> <0 < 0

Objectives

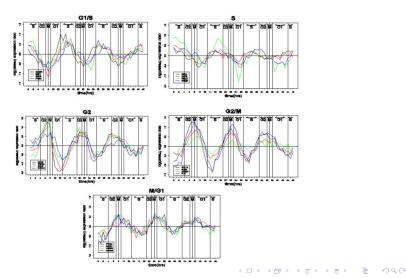
- Identification of the cell cycle expressed genes
- Determine of differentially expressed genes:
 - which genes are involved in different type of cells (cancer versus healthy cells) ?


Clustering and classifying have proven helpful to:

- Extract main groups of behaviour expressions
- Identify new genes (unlabeled, unknown)
- Identify new genes relationships: co-expressed genes, co-regulated genes, understand genes functions,

Conventional Approach

Hela data (Whitfield et al. 2002)


- Studied genes are preprocessed: non-cyclic expression, unexpressed genes and noisy expression
- Experimentally, a set of reference genes are selected

• Each measured gene is assigned to one phase by it's peak similarity to the reference genes: Pearson correlation.

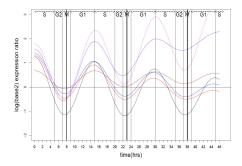
The expression profiles of the 20 reference genes

- The expression profiles of the 20 reference genes, illustrating their peak expression at one phase during three cell division cycles. The double arrowed lines delimit the time duration for four cell cycle phases: G_1 , S, G_2 and M.

Aims

Limitations

- No consensus on the well-characterized genes, experimentation bias
- Similarity ignores the temporal structure, fixed a priori and unjustified


Aims

• Learn the best dissimilarity measure to classify or cluster genes expression profiles.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• Propose a well-founded set of reference genes.

Gene expression progression during the cell division process

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- periodic profiles
- variation on: cell-cycle duration, initial amplitude
- amplitude attenuation
- tendency and drifts effects

Which metric for clustering and classifying genes expression profiles ?

- Values-based metrics ?
 - DTW, Euclidean distance, Manhattan distance, Fréchet distance, LCSS,...

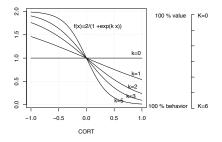
• Behavior-based metrics ?

- Pearson correlation coefficient, Qualitative distance (slope, derivative comparison), Kendall ratio, temporal correlation coefficient, etc...

• Values and Behavior-based metrics ?

Proximity measure specifications

- Genes expression are cyclic profiles
- Time of peak expression determines the cell-cycle phase assignment,
- Genes expression data may include tendency effects, amplitude attenuation,...


Induced constraints ...

- r should not include time warping
- δ_E is considered for values proximity measure
- cort is considered for behavior proximity measure

Values & Behavior-based metrics

$$D_k(S_1, S_2) = f(\operatorname{cort}(S_1, S_2)) \cdot \delta_E(S_1, S_2) \text{ with } f(x) = \frac{2}{1 + \exp(k x)} , k \ge 0$$

k: the contribution of values and of behavior to D

k learned during the classification or the clustering processes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Adaptive clustering: Partitioning around medoids approach

Motivations

• Use the PAM (Partitioning Around Medoids) algorithm to partition the set of genes into 5 clusters (5 cell cycle phases)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- More robust than k-means faced to outliers,
- Provide a more detailed analysis of the obtained partition
- Indicating for each object if it is (width silhouette):
 - well classified (i.e., genes well characterizing a cell cycle phase)
 - or lying on the boundary (genes involved in an inter-phase transition)

Algorithm steps

Learning D_k

- Perform the PAM algorithm based on D_k and for several values of (n, k). Let $P_{n,k}$ be the obtained partition.
- note $P_{n*,k*}$ the optimal partition according to two goodness criteria (asw, wb ratio)

Identification of the well-characterized genes

- Extract a kernel set of the p first genes maximizing the silhouette width,
- Identify the cell cycle phase of the kernel set,
- Assign each cluster to the cell cycle phase of it's kernel set.

Classification of the expressed cell cycle genes

• Assign each gene to the cell cycle phase of the cluster it belongs in.

Application specifications

- Analysis of experimental transcriptomic data from Human cancer cell line (Whitfield et al. 2002)
- Third experimentation
- The expression of 1099 periodically expressed genes through 48 instants covering 3 cell division cycles

http://genome-www.stanford.edu/Human-CellCycle/Hela/

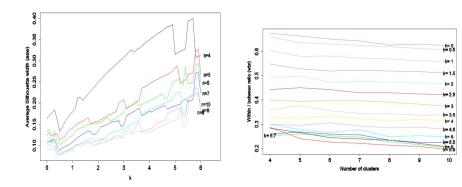
Adaptive Clustering: Identification of the expressed cell cycle genes

Learning the most appropriate D_k

- Perform the PAM algorithm based on D_k for k varying in [0, 6] and n in [4, 10], $P_{n,k}$ the obtained partition for a given (n, k).

- $(n^*, k^*) = argmax_{n,k}(avgSil(P_{n,k})), D_{k^*}$ is the most appropriate dissimilarity.

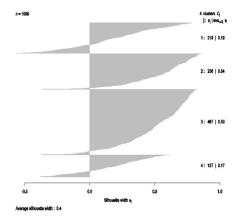
Identification of the well-characterized genes


- Extract a kernel set of the N first genes maximizing the silhouette width,
- Identify the cell cycle phase of the kernel set,
- Assign each cluster to the cell cycle phase of it's kernel set.

Classification of the expressed cell cycle genes

- Assign each gene to the cell cycle phase of the cluster it belongs in.

Learning the dissimilarity D_k through the partitioning process


- Average silhouette width (left plot) and the within/between ratio (right plot) of $P_{n\,k}$, n from 4 to 10 and k from 0 to 6

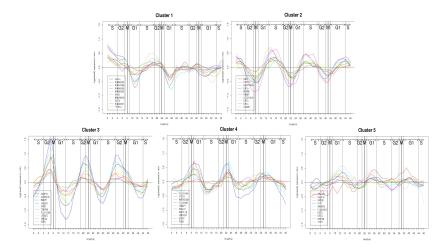
(日)、

3 N 3

Average silhouette width of the genes profiles partition

n* = 4, k* = 5.7: essentially the behavior separate well genes in 4 clusters Average Silhouette width=0.4: the clustering structure is reasonable

Identification of the well-characterized genes


-Extract a kernel set of the n = 10 first genes maximizing the silhouette width

Cluster	Gene Name	Whitfield	Gene Type	Neighbor	Silhouette	High
Number		Assignment		Cluster	width (sw)	peaked phase
	Homo	S	K	2	0.806	
	KIAA0855	S	K	3	0.697	
	KIAA1598	S	K	2	0.688	
	KIAA0855	S	K	2	0.686	
	KIAA0855	S	K		0.681	
	SHC1	S	K	2	0.677	
1	AA452872	S	K	3	0.674	S
	ESTs	S	K	3	0.665	
	KIAA0841	S	K	2	0.658	
	**ESTs	S	K	3	0.635	
	RRM2	S	R	2	0.586	
	DHFR	S	R	2	0.315	
	RAD51	s	R	3	0.238	
	E2F1*	G1/S	K	1	0.832	
	ORCIL	G1/S	K	î	0.829	
	SERPINB3	G1/S	K	1	0.82	
	EST8	G_1/S	K		0.812	
	MCM6	G1/S	K	î	0.812	
	RAMP	G1/S	K	1	0.812	
	LOC51218	G1/S	K	î	0.802	
2	ESTs	G1/S	K	î	0.794	G_1/S
-	ESTs	G1/S	K	î	0.794	01/0
	CCNE1	G1/S	K/R	5	0.786	
	E2F1	G1/S	R	1	0.775	
	CDC6	G1/S	R	1	0.682	
	PCNA	G1/S	R	1	0.625	
	RFC4	S1/5	R	1	0.526	
	CASP3	G2	K	4	0.811	
	CDKN1B	G2	K	4	0.807	
	WISP1	G2 G2	K	4	0.807	
	UBE2C	G2 G2	K	4	0.788	
	CKS1	G2 G2	K	4	0.784	
	T56726	G2 G2	K	4	0.779	
	FLJ11029	G2 G2	K	1	0.779	
	UBE2C	G2 G2	K	4	0.779	
3	HMG ₂	G2	K	4	0.768	
		G2	K	4	0.765	0.04
	FZRÍ CCNF	G2	R	4	0.765	G_2/M
	TOP2A	G2	R	4	0.757	
		G2	R		0.669	
	CDC2	G_2		1		
	STK15	G_2/M	R	4	0.478	
	CCNA2	\tilde{G}_2	R	4	0.458	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{cccccc} AA705332 & Cg/M & K & 5 & 0.695 \\ FL10461 & Cg/M & K & 3 & 0.651 \\ CNAP1 & Cg/M & K & 3 & 0.590 \\ MEPL0 & M/G & K & 3 & 0.590 \\ MEPL0 & M/G & K & 3 & 0.595 \\ MINGCR & M/G & K & 3 & 0.578 \\ IDNG & M/G & K & 3 & 0.578 \\ IDN3 & G_2 & K & 3 & 0.578 \\ ROKS1 & M/G & R & 3 & 0.450 \\ \end{array} $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CNAP1 G2/M K 3 0.500 NB2C1 G2 K 3 0.503 MB2C1 G2 K 3 0.503 MB2C1 G2 K 3 0.583 MBC1 M/G1 K 3 0.585 HMGCR M/G1 K 3 0.576 4 ZPEP M/G1 K 3 0.576 BD3 G2 K S 0.576 0.576 RAD21 M/G1 R S 0.433 0.433	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
MEPLID M/G1 K 3 0.585 HMGCR M/G1 K 3 0.579 4 ZPEP M/G1 K 3 0.576 103 G2 K 3 0.576 RAD21 M/G1 K 3 0.576 RAD21 M/G1 R 3 0.433	
HMGCR M/G ₁ K 3 0.579 4 ZPBP M/G ₁ K 3 0.578 1DN3 G ₂ K 3 0.576 RAD21 M/G ₁ R 3 0.433 CDKN3 M/G ₁ R 3 0.320	
4 (2007) M/(G) K 3 0.576 IDN3 G ₂ K 3 0.576 RAD21 M/(G) R 3 0.433 (2008) M/(G) R 3 0.433	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d/G_1
RAD21 M/G ₁ R 3 0.433 CDKN3 M/G R 3 0.320	4/01
CDKN3 M/G B 3 0.320	
PTTG ₁ M/G ₁ R 5 0.282	
BUB1 G ₂ /M R 3 0.184	
BUB1 G_2/\dot{M} R 3 0.184 VEGFC M/G1 R 3 0.148	
CCNB1 G ₂ /M R 3 0.095	
CCNB1 G'_2/\dot{M} R 3 0.095 PLK G'_2/M R 3 0.003	
RAB3A M/G1 K 2 0.561	
H2BFQ M/G1 K 2 0.502	
HMGE M/G ₁ K 4 0.489	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5 BAIAP2 G ₁ /S K 2 0.478	G_1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	01
ESTs M/G ₁ K 4 0.429	
ESTs G_1/S K 2 0.407	
SSP29 G ₂ /M K 4 0.398	
$\begin{array}{c ccccc} FLI23053 & G_1/8 & K & 2 & 0.475 \\ ESTs & M/G_1 & K & 4 & 0.429 \\ ESTs & G_1/8 & K & 2 & 0.407 \\ SSP29 & G_2/M & K & 4 & 0.398 \\ TOP1 & M/G_1 & K & 4 & 0.394 \\ \end{array}$	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Identify the cell cycle phase of each kernel set

・ロト ・聞ト ・ヨト ・ヨト

э

k*=5.9, $(S, G_1/S, G_2/M, M/G_1, G_1)$

Assignement of boundary genes

		100							
Name	Ada-Assi	Neig	Sw	Final-Assi	Name	Ada-Assi	Neig	Sw	Final-Ass
MZF1	S	G_1/S	0.049	begin of S	NR5A2	G_2/M	G_1	0.05	М
TncRNA	S	G_1/S	0.049	begin of S	HERPUD2	G_2/M	G_1	0.045	м
CAPS	S	G_1/S	0.041	begin of S	AMD1	G_2/M	G_1	0.035	м
AURKE	S	G_2/M	0.039	G_2	NIPBL	G_2/M	G_1	0.012	M
ZFX	S	G_2/M	0.038	G_2	NFIC	G_2/M	G_1	0.008	м
KATNA1	S	G_2/M	0.028	G_2	ESTs	G_2/M	G_1	0.006	м
KBTBD2	S	G_2/M	0.026	G_2	ChGn	G_2/M	G_1	0.003	М
CDKL5	S	G_2/M	0.02	G_2	BCLAF1	G_2/M	S	0,001	G_2
TTC31	S	G_1/S	0.013	begin of S	WWC1	G_2/M	G_1	-0.003	м
LOC134121	S	G_2/M	0.012	G_2	HLA-DOA	G_2/M	G_1	-0.012	м
UBL3	S	G_1	0.011	G_1/S	AGPAT3	G_2/M	G1	-0.015	м
CDKN2C	S	G_2/M	0	G_2	C20orf199	G_2/M	G_1	-0.017	м
REEP1	S	G_1/S	-0.012	begin of S	SLC39A10	G_2/M	G_1	-0.02	м
TOP2A	S	G_2/M	-0.023	G_2	LARP1	G_2/M	G_1	-0.024	М
MICA/HCP5	S	G_2/M	-0.039	G_2	ANP32B	G_2/M	G_1	-0.026	м
CDH24	S	G_1/S	-0.041	begin of S	ABHD10	G_2/M	S	-0.029	G_2
ABCC5	S	G_1/S	-0.044	begin of S	FXR1	G_2/M	G_1	-0.032	м
RECQL4	G_1/S	S	0.047	begin of S	ZNF207	G_1	G_2/M	0.05	М
SLC9A3	G_1/S	\boldsymbol{S}	0.046	begin of S	HSPA2	G_1	G_2/M	0.048	м
FLJ13231	G_1/S	S	0.028	begin of S	PPP2CA	G_1	G_2/M	0.044	M
ESTs	G_1/S	S	0.001	begin of S	CEP350	G_1	G_2/M	0.017	м
EST	G_1/S	G_1	-0.019	end of G1	OC146517	G_1	G_2/M	0.013	м
HIST1H2AM	G_1/S	S	-0.045	begin of S	SAP30BP	G_1	S	0.009	G_1/S
BAIAP2	G_1/S	G_1	-0.045	end of G1	DR1	G_1	G_2/M	0.007	м
CRLF3	G_1/S	S	-0.05	begin of S	TMEM132A	G_1	G_2/M	0.002	м
					W85890	G_1	G_2/M	-0.007	м
					PCF11	G_1	G_2/M	-0.021	м
					DNAJA1	G_1	G_2/M	-0.022	м
					TSC22	G_1	G_2/M	-0.023	м
					EST	G_1	G_2/M	-0.024	M
							10,000		

The kernel sets of the partition $P_{n*=4,k=5.7}$

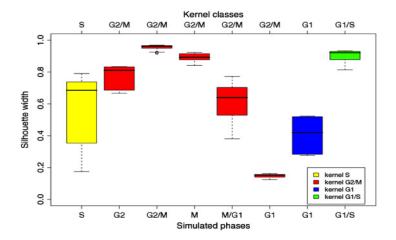
E 990

Metrics efficiency comparision: Random-Periods model for periodically expressed genes

The sinusoid function characterizing the expected periodic expression of a cell-cycle gene g (Liu et al. (2004)):

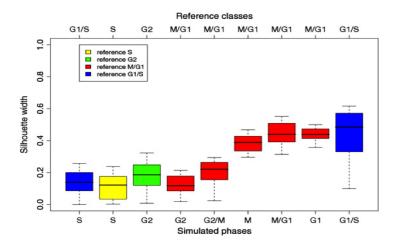
$$f(t,\theta_g) = a_g + b_g t + \frac{K_g}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(\frac{2\pi t}{\text{Texp}(\sigma z)} + \Phi_g) \exp(-\frac{z^2}{2}) dz,$$

where θ_g is explicitly $(K_g, T, \sigma, \Phi_g, a_g, b_g)$, specific to each gene g


- Kg: initial amplitude of the periodic expression pattern
- T: cell-cycle duration
- σ : governs the rate of attenuation in amplitude
- Φ_g : corresponds to the cell-cycle phase during which the gene undergoes its peak level of transcription
- a_g and b_g : account for any drift (intercepts and slopes, respectively) in a gene's background expression level

Dissimilarity efficiency for classifying gene expression profiles

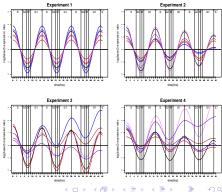
Simulated classes	Kernel classes				Referen	Reference classes				
	S	G_2/M	G1	G1/S	s	G ₂	G_2/M	M/G_1	G ₁ /S	
S	100	0	0	0	29	0	0	0	71	
G ₂	0	100	0	0	0	65	0	35	0	
G_2/M	0	100	0	0	0	0	0	100	0	
M	0	100	0	0	0	0	0	100	0	
M/G_1	0	100	0	0	0	0	0	100	0	
G1	0	27	73	0	0	0	0	100	0	
G_1/S	0	0	0	100	0	0	0	0	100	


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dissimilarity efficiency for classifying gene expression profiles

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Dissimilarity efficiency for classifying gene expression profiles


◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

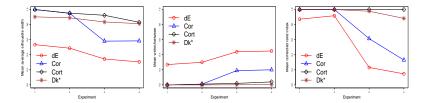
Validation Protocol

- A simulation study based on 20000 genes expression profiles,
- genes are equally generated from 5 classes (five cell-cycle phases)
- each gene expression is observed through 3 cell-cycles on 47 instants,
- Four experiments are simulated (500 genes /experiment)
- 10 samples are generated for each experiment

 $T = 15, \Phi_g = (0, 5.190, 3.823, 3.278, 2.459)$

Experiment number	Kg	σ	bg	ag
1	[0.34, 1.33]	0	0	0
2	[0.34, 1.33]	[0, 0.115]	0	0
3	[0.34, 1.33]	0	[-0.05, 0.05]	[0, 0.8]
4	[0.34, 1.33]	[0, 0.115]	[-0.05, 0.05]	[0, 0.8]

Proximity measures efficiency for clustering genes expression profiles


For each experiment $j \in \{1, 2, 3, 4\}$ and for each measure δ_E , COR, and CORT

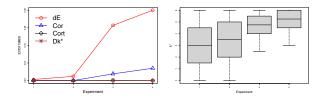
- a PAM algorithm is used to partition each sample S_{ij} , $i \in \{1, ..., 10\}$ into 5 clusters (5 cell cycle phases)
- Three goodness criteria: the average silhouette width (asw), the within/between ratio (wbr), and the corrected Rand index (RI)

For the adaptive dissimilarity D_k

• a PAM algorithm is performed for k varying in [0, 6],

• select
$$P_{k*}^{ij}$$
, with $k* = argmax_k(avgSil(P_k^{ij}))$,

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @


Proximity measure efficiency for classifying gene expression profiles

For each experiment $j \in \{1, 2, 3, 4\}$ and for each measure δ_E , COR, and CORT

- A 10-NN algorithm is performed to classify each sample S_{ij} , $i \in \{1, ..., 10\}$
- The misclassification error rate is evaluated

For the adaptive dissimilarity D_k

- the 10-NN algorithm is performed for k varying in [0, 6],
- C_{k*}^{ij} is selected with $k* = argmin_k(ErrorRate(C_k^{ij}))$,

 - Liu, D., Umbach, D.M., Peddada, S.D., Li, L., Crockett, P.W., Weinberg, C.R., 2004. A random-periods model for expression of cell-cycle genes. Proceedings of the National Academy of Sciences of the USA 101, 72407245.
- Liu, X., Lee, S., Casella, G., Peter, G.F., 2008. Assessing agreement of clustering methods with gene expression microarray data. Computational Statistics and Data Analysis 52 (12), 53565366.

- Maharaj, E.A., 2000. Cluster of time series. Journal of Classification 17, 297314.

 Oates, T., Firoiou, L., Cohen, P.R., 1999. Clustering time series with Hidden Markov models and dynamic time warping. In: Proceedings of the 6th IJCAI-99, Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, Stockholm, pp. 1721.

 Peddada, S.D., Lobenhofer, L., Li, L., Afshari, C., Weinberg, C., Umbach, D., 2003. Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19, 834841.

- Pihur, V., Datta, S., Datta, S., 2007. Weighted rank aggregation of cluster validation measures: A Monte Carlo cross-entropy approach. Bioinformatics 23 (13), 16071615.

-Whitfield, M.L., Sherlock, G., Murray, J.I., Ball, C.A., Alexander, K.A., Matese, J.C., Perou, C.M., Hurt, M.M.,

Brown, P.O., Botstein, D., 2002. Identification of genes periodically expressed in the human cell cycle and their expression in tumors molecular. Biology of the Cell 13, 19772000.