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Time Series: a complex data !

Real Data: UCI ML Household Electrical load consumption

Data characteristics:
Each time series gives a daily load consumption

In Low (vs. High) class the average consumption between 6-8 pm is lower (resp. higher)
than the annual average consumption

Consumption profiles are different within class

Ahlame Douzal (AMA-LIG-UJF) Discriminant Temporal Matching Nov - 2013 2 / 20



Objective and challenges

Objective
The early classification (before 6 pm) of a load consumption to predict consumer demand
on 6-8pm

Standard approaches
Based on a standard time series metric (DTW)

Assign a time series to the class of similar consumption profiles

Challenge
Load consumption exhibit different global behaviors within classes or nearly similar ones
between classes
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Time series alignment

- Euclidean alignment

- Dynamic Time Warping DTW (Sankoff & Kruskal 1983,
Kruskal & Liberman 1983).

- Alignment under global/local
constraintes(Sakoe-Chiba 1975, Itakura 1971, Rabiner
1978)
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Time series classification: DTW-based approaches

DTW Characteristics
– DTW metric, performed in light of a single pair of time series

– Ignore the whole dynamics within and between classes

– Achieved regardless of the analysis process (as clustering or classification)

– Constrained alignments (temporal order, montonicity, no cross linkages,...)

– Limited performances to classify/ cluster complex time series

Propositions to enhance DTW performances
– DTW constraint learning for large margin nearest neighbor classification

Yu et al. 2011, Jeong et al. 2011

– Probabilistic models to handle jointly time series analysis (clustering, classification)
and matching processes Gaffney et al. 2005, Ramsay et al. 1998

– Hierarchical bayesian model to detect slight differences between classes Listegarten et
al. 2007

Problem: still assume similar global behaviors within classes !
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Learning temporal matching for time series classification

Objective
Complex time series classification: different dynamics within classes, slight differences
between classes

For this,

Enlarge time series alignments to a less constrained temporal matching

The learning process involves the whole dynamics within and between classes

Match time series on their shared features within classes and distinctive ones between
classes

Derive a metric based on the highlighted discriminative features to be used for the time
series classification.
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Proposal’s key

Given a set of linked time series (alignment, temporal matching,...)
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Idea
Each link induces a variability corresponding to the divergence between the connected
values

To reveal shared features within a class, we minimize the within variance by removing
links between non shared features

To reveal differential features between classes, we maximize the between variance by
removing links between shared features
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Proposal’s key

How?
A new formalization of the classical variance/covariance for a set of time series, as well as
for a partition of time series

Strengthen or weaken links according to their contribution to the variances within and
between classes
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Variance/Covariance formalization for time series data

- S1, ..., Sn multivariate time series, of length T describing p variables

- X : description of S1, ..., Sn by p variables

- Assume time series linked through DTW alignment, temporal matching, ...

We define M(n,n)(Mll′ ) as an adjacency block matrix

A block Mll′ specifies the linkage between Sl and Sl′

A term of Mll′ mll′
ii′ = 1 if the instants i and i ′ of Sl and S ′l are aligned, 0 otherwise.
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Variance induced by a set of time series

Variance/covariance induced by a set of time series

VM(X ) = X t(I −M′)tP(I −M′)X

M′: row normalized matrix of M

(I −M′): Laplacian matrix of the graph defined by the connected observations

Each observation is centered relative to the average of its neighborhood.

Remark: VM leads to the total Variance/Covariance

- For a complete linkage defined by a unit matrix M = 1

- If each time series shrinks to one point

Ahlame Douzal (AMA-LIG-UJF) Discriminant Temporal Matching Nov - 2013 10 / 20



Variance induced by a partition of time series

Variance/covariance within et between classes of time series

VMW (X ) = X t(I −M′W )tP(I −M′W )X

VMB (X ) = X t(I −M′B)tP(I −M′B)X

intra-class matching MW :
mll′

ii′ = 1 if the linked time series belong to the same class, 0 otherwise.

inter-class matching MB :
mll′

ii′ = 1 if the linked time series belong to different classes, 0 otherwise.

Remark: VMW , VMB lead to the within, between Variance/Covariance

- For a complete linkage defined by a unit matrix MW = 1, MB = 1

- If each time series shrinks to one point
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Learning a discriminative temporal matching
Two consecutive phases algorithm
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Learning the intra-class temporal matching

Sl = (x l
1, ..., x

l
T ), Sl′ = (x l′

1 , ..., x l′
T ) belonging to Ck (|Ck | = nk)

M\(i , i ′, l , l ′) : M after the removal of the link (i , i ′) between Sl and Sl′ (mll′
ii′ = 0)

Outlines of the algorithm

1 Initialise MW as a complete linkage

∀ i , i ′ ∈ {1, ...T} and Sl , Sl′ of the same class mll′
ii′ = 1

2 Calculate the contribution C ll′
ii′ to the variance VMW of each link i , i ′ between Sl et Sl′

C ll′
ii′ = VMW − VMW \(i,i′,l,l′)

3 Delete links (i , i ′) (mll′
ii′ = 0) of positive contributions C ll′

ii′ > 0

4 Iterate steps 2 and 3 until VMW stabilization
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Non degenerate and convergence conditions

∀k ∈ {1, ...,K}, ∀(l , l ′) ∈ Ck , ∀(i , i ′) ∈ [1,T ]2

Variance definition
1- mll

ii > 0

2- MW row-normalized :
∑nk

l′=1
∑T

i′=1 mll′
ii′ = 1

Non-degenerate variance

3- Each obs. of Sl should be linked to at least one obs. of Sl′ :
∑T

i′=1 mll′
ii′ > 0

Convergence of the variance minimization process
4- The delete of (i , i ′) impacts the i et i ′ neighborhoods (rows i and i ′): at each iteration,

delete the link of maximal positive contribution per row

Ahlame Douzal (AMA-LIG-UJF) Discriminant Temporal Matching Nov - 2013 16 / 20



Non degenerate and convergence conditions

∀k ∈ {1, ...,K}, ∀(l , l ′) ∈ Ck , ∀(i , i ′) ∈ [1,T ]2

Variance definition
1- mll

ii > 0

2- MW row-normalized :
∑nk

l′=1
∑T

i′=1 mll′
ii′ = 1

Non-degenerate variance

3- Each obs. of Sl should be linked to at least one obs. of Sl′ :
∑T

i′=1 mll′
ii′ > 0

Convergence of the variance minimization process
4- The delete of (i , i ′) impacts the i et i ′ neighborhoods (rows i and i ′): at each iteration,

delete the link of maximal positive contribution per row

Ahlame Douzal (AMA-LIG-UJF) Discriminant Temporal Matching Nov - 2013 16 / 20



Non degenerate and convergence conditions

∀k ∈ {1, ...,K}, ∀(l , l ′) ∈ Ck , ∀(i , i ′) ∈ [1,T ]2

Variance definition
1- mll

ii > 0

2- MW row-normalized :
∑nk

l′=1
∑T

i′=1 mll′
ii′ = 1

Non-degenerate variance

3- Each obs. of Sl should be linked to at least one obs. of Sl′ :
∑T

i′=1 mll′
ii′ > 0

Convergence of the variance minimization process
4- The delete of (i , i ′) impacts the i et i ′ neighborhoods (rows i and i ′): at each iteration,

delete the link of maximal positive contribution per row

Ahlame Douzal (AMA-LIG-UJF) Discriminant Temporal Matching Nov - 2013 16 / 20



Derive discriminative metric

M∗: the learned discriminative matching

Let M l .
∗ be the average matching to Sl :

M l .
∗ =

1
(n − nk)T

∑
l′

M ll′
∗

with yl′ 6= yl = k

The discriminative dissimilarity between SNew and Sl

Dl(Sl , SNew ) = min
r∈{0,..,T−1}

(
∑

|i−i ′|≤r ; (i,i ′)∈[1,T ]2

ml .
ii ′∑

|i−i ′|≤r ml .
ii ′
(x l

i − xNew
i ′ )2)

where r corresponds to the Sakoe-Chiba band width.
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Classification of the household electric power consumption

Objective: Early classification of consumption profiles for consumer demand
prediction on 6-8pm
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Classification of the household electric power consumption

Learned discriminant matching (CONSLEVEL)

M∗W (Low)

M∗B (Low vs. High)
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Preliminary results

- Classes compactness/separability by MDS
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Preliminary results
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Figure: The learned discriminative matching for the characters "c”, ”o”, ”l”, "e", "u" and "a"
of TRAJ data (UCI ML)

Ahlame Douzal (AMA-LIG-UJF) Discriminant Temporal Matching Nov - 2013 20 / 20


	Main Talk

