Learning Metrics for Time Series (Part 2)

Ahlame Douzal

Univ. Grenoble Alpes CNRS-LIG/AMA France

Nov - 2013

Time Series: a complex data !

Real Data: UCI ML Household Electrical load consumption

Data characteristics:

- Each time series gives a daily load consumption
- In Low (vs. High) class the average consumption between 6-8 pm is lower (resp. higher) than the annual average consumption
- Consumption profiles are different within class

Objective and challenges

Objective

• The early classification (before 6 pm) of a load consumption to predict consumer demand on 6-8pm

Standard approaches

- Based on a standard time series metric (DTW)
- Assign a time series to the class of similar consumption profiles

Challenge

• Load consumption exhibit different global behaviors within classes or nearly similar ones between classes

Time series alignment

- Euclidean alignment

 Dynamic Time Warping DTW (Sankoff & Kruskal 1983, Kruskal & Liberman 1983).

 Alignment under global/local constraintes(Sakoe-Chiba 1975, Itakura 1971, Rabiner 1978)

Time series classification: DTW-based approaches

DTW Characteristics

- DTW metric, performed in light of a single pair of time series
- Ignore the whole dynamics within and between classes
- Achieved regardless of the analysis process (as clustering or classification)
- Constrained alignments (temporal order, montonicity, no cross linkages,...)
- Limited performances to classify/ cluster complex time series

Propositions to enhance DTW performances

- DTW constraint learning for large margin nearest neighbor classification Yu et al. 2011, Jeong et al. 2011
- Probabilistic models to handle jointly time series analysis (clustering, classification) and matching processes Gaffney et al. 2005, Ramsay et al. 1998
- Hierarchical bayesian model to detect slight differences between classes Listegarten et al. 2007

Problem: still assume similar global behaviors within classes !

Learning temporal matching for time series classification

Objective

• Complex time series classification: different dynamics within classes, slight differences between classes

For this,

- Enlarge time series alignments to a less constrained temporal matching
- The learning process involves the whole dynamics within and between classes
- Match time series on their shared features within classes and distinctive ones between classes
- Derive a metric based on the highlighted discriminative features to be used for the time series classification.

Proposal's key

Given a set of linked time series (alignment, temporal matching,...)

Idea

- Each link induces a variability corresponding to the divergence between the connected values
- To reveal shared features within a class, we minimize the within variance by removing links between non shared features
- To reveal differential features between classes, we maximize the between variance by removing links between shared features

Proposal's key

How?

- A new formalization of the classical variance/covariance for a set of time series, as well as for a partition of time series
- Strengthen or weaken links according to their contribution to the variances within and between classes

Variance/Covariance formalization for time series data

- $S_1, ..., S_n$ multivariate time series, of length T describing p variables
- X: description of $S_1, ..., S_n$ by p variables
- Assume time series linked through DTW alignment, temporal matching, ...
- We define M_(n,n)(M_{II}) as an adjacency block matrix
- A block $M_{II'}$ specifies the linkage between S_I and $S_{I'}$
- A term of $M_{II'}$ $m_{ii'}^{II'} = 1$ if the instants *i* and *i'* of S_I and S'_I are aligned, 0 otherwise.

Variance induced by a set of time series

• Variance/covariance induced by a set of time series

$$V_M(X) = X^t(I - M')^t P(I - M')X$$

M': row normalized matrix of M

(I - M'): Laplacian matrix of the graph defined by the connected observations Each observation is centered relative to the average of its neighborhood.

Remark: V_M leads to the total Variance/Covariance

- For a complete linkage defined by a unit matrix M = 1
- If each time series shrinks to one point

Variance induced by a partition of time series

• Variance/covariance within et between classes of time series

$$V_{M_W}(X) = X^t (I - M'_W)^t P(I - M'_W) X$$

$$V_{M_B}(X) = X^t (I - M'_B)^t P(I - M'_B) X$$

intra-class matching *M*_{*W*}:

 $m_{ii'}^{ll'} = 1$ if the linked time series belong to the same class, 0 otherwise.

inter-class matching M_B:

 $m_{\prime\prime\prime}^{\prime\prime\prime}=1$ if the linked time series belong to different classes, 0 otherwise.

Remark: V_{M_W} , V_{M_R} lead to the within, between Variance/Covariance

- For a complete linkage defined by a unit matrix $M_W = 1$, $M_B = 1$
- If each time series shrinks to one point

Learning a discriminative temporal matching

Two consecutive phases algorithm

Learning a discriminative temporal matching

Two consecutive phases algorithm

Learning a discriminative temporal matching

Two consecutive phases algorithm

Discriminant Temporal Matching

$$S_l = (x_1^l, ..., x_T^l), S_{l'} = (x_1^{l'}, ..., x_T^{l'})$$
 belonging to C_k $(|C_k| = n_k)$
 $M \setminus (i, i', l, l') : M$ after the removal of the link (i, i') between S_l and $S_{l'}$ $(m_{ii'}^{ll'} = 0)$

Outlines of the algorithm

1 Initialise
$$M_W$$
 as a complete linkage
 $\forall i, i' \in \{1, ... T\}$ and $S_I, S_{I'}$ of the same class $m_{ii'}^{II'} = 1$

2) Calculate the contribution $C_{ii'}^{ll'}$ to the variance $V_{M_{W'}}$ of each link i,i' between S_l et $S_{l'}$

$$C_{ii'}^{ll'} = V_{M_W} - V_{M_W \setminus (i,i',l,l')}$$

3) Delete links (i,i') $(m^{ll'}_{ii'}=0)$ of positive contributions $C^{ll'}_{ii'}>0$

] Iterate steps 2 and 3 until V_{M_W} stabilization

$$S_l = (x_1^l, ..., x_T^l), S_{l'} = (x_1^{l'}, ..., x_T^{l'})$$
 belonging to C_k $(|C_k| = n_k)$
 $M \setminus (i, i', l, l') : M$ after the removal of the link (i, i') between S_l and $S_{l'}$ $(m_{ii'}^{ll'} = 0)$

Outlines of the algorithm

• Initialise
$$M_W$$
 as a complete linkage
 $\forall i, i' \in \{1, ... T\}$ and $S_I, S_{I'}$ of the same class $m_{ii'}^{II'} = 1$

2 Calculate the contribution $C_{ii'}^{\parallel \prime}$ to the variance V_{M_W} of each link *i*, *i'* between S_I et $S_{I'}$

$$C_{ii'}^{ll'} = V_{M_W} - V_{M_W \setminus (i,i',l,l')}$$

3 Delete links (i, i') $(m_{ii'}^{ll'} = 0)$ of positive contributions $C_{ii'}^{ll'} > 0$

Iterate steps 2 and 3 until V_{Mw} stabilization

$$\begin{split} S_I &= (x_1^I, ..., x_T^I), \ S_{I'} &= (x_1^{I'}, ..., x_T^{I'}) \text{ belonging to } C_k \ (|C_k| = n_k) \\ M &\setminus (i, i', I, I') : M \text{ after the removal of the link } (i, i') \text{ between } S_I \text{ and } S_{I'} \ (m_{ii'}^{II'} = 0) \end{split}$$

Outlines of the algorithm

1 Initialise
$$M_W$$
 as a complete linkage
 $\forall i, i' \in \{1, ... T\}$ and S_I , $S_{I'}$ of the same class $m_{ii'}^{II'} = 1$

2 Calculate the contribution $C_{ii'}^{ll'}$ to the variance V_{M_W} of each link *i*, *i'* between S_l et $S_{l'}$

$$C_{ii'}^{ll'} = V_{M_W} - V_{M_W \setminus (i,i',l,l')}$$

3 Delete links (i, i') $(m_{ii'}^{ll'} = 0)$ of positive contributions $C_{ii'}^{ll'} > 0$

Iterate steps 2 and 3 until V_{Mw} stabilization

$$\begin{split} S_I &= (x_1^I, ..., x_T^I), \ S_{I'} &= (x_1^{I'}, ..., x_T^{I'}) \text{ belonging to } C_k \ (|C_k| = n_k) \\ M &\setminus (i, i', I, I') : M \text{ after the removal of the link } (i, i') \text{ between } S_I \text{ and } S_{I'} \ (m_{ii'}^{II'} = 0) \end{split}$$

Outlines of the algorithm

1 Initialise
$$M_W$$
 as a complete linkage
 $\forall i, i' \in \{1, ... T\}$ and $S_I, S_{I'}$ of the same class $m_{ii'}^{II'} = 1$

2 Calculate the contribution $C_{ii'}^{ll'}$ to the variance V_{M_W} of each link *i*, *i'* between S_l et $S_{l'}$

$$C_{ii'}^{ll'} = V_{M_{W}} - V_{M_{W} \setminus (i,i',l,l')}$$

3 Delete links (i, i') $(m_{ii'}^{ll'} = 0)$ of positive contributions $C_{ii'}^{ll'} > 0$

Iterate steps 2 and 3 until V_{Mw} stabilization

Discriminant Temporal Matching

Non degenerate and convergence conditions

$$\forall k \in \{1, ..., K\}, \ \forall (I, I') \in C_k, \ \forall (i, i') \in [1, T]^2$$

Variance definition

- 1- $m_{ii}^{ll} > 0$
- 2- M_W row-normalized : $\sum_{i'=1}^{n_k} \sum_{i'=1}^{T} m_{ii'}^{ll'} = 1$

Non-degenerate variance

3- Each obs. of S_l should be linked to at least one obs. of $S_{l'}$: $\sum_{i'=1}^{T} m_{ii'}^{ll'} > 0$

Convergence of the variance minimization process

4- The delete of (i, i') impacts the *i* et *i'* neighborhoods (rows *i* and *i'*): at each iteration, delete the link of maximal positive contribution per row

Non degenerate and convergence conditions

$$\forall k \in \{1, ..., K\}, \ \forall (I, I') \in C_k, \ \forall (i, i') \in [1, T]^2$$

Variance definition

- 1- $m_{ii}^{ll} > 0$
- 2- M_W row-normalized : $\sum_{i'=1}^{n_k} \sum_{i'=1}^{T} m_{ii'}^{ll'} = 1$

Non-degenerate variance

3- Each obs. of S_l should be linked to at least one obs. of $S_{l'}$: $\sum_{i'=1}^{T} m_{ii'}^{ll'} > 0$

Convergence of the variance minimization process

4- The delete of (i, i') impacts the i et i' neighborhoods (rows i and i'): at each iteration, delete the link of maximal positive contribution per row

Non degenerate and convergence conditions

$$\forall k \in \{1, ..., K\}, \ \forall (I, I') \in C_k, \ \forall (i, i') \in [1, T]^2$$

Variance definition

- 1- $m_{ii}^{ll} > 0$
- 2- M_W row-normalized : $\sum_{i'=1}^{n_k} \sum_{i'=1}^{T} m_{ii'}^{ll'} = 1$

Non-degenerate variance

3- Each obs. of S_I should be linked to at least one obs. of $S_{I'}$: $\sum_{i'=1}^{T} m_{ii'}^{II'} > 0$

Convergence of the variance minimization process

4- The delete of (i, i') impacts the *i* et *i'* neighborhoods (rows *i* and *i'*): at each iteration, delete the link of maximal positive contribution per row

Derive discriminative metric

 M_* : the learned discriminative matching

• Let M_*^{I} be the average matching to S_I :

$$M_{*}^{I} = rac{1}{(n-n_k) T} \sum_{I'} M_{*}^{II'}$$

with $y_{l'} \neq y_l = k$

• The discriminative dissimilarity between S_{New} and S_{I}

$$D_{I}(S_{I}, S_{New}) = \min_{r \in \{0, ..., T-1\}} \left(\sum_{|i-i'| \le r; (i,i') \in [1, T]^{2}} \frac{m'_{ii'}}{\sum_{|i-i'| \le r} m'_{ii'}} (x_{i}^{I} - x_{i'}^{New})^{2} \right)$$

where r corresponds to the Sakoe-Chiba band width.

Classification of the household electric power consumption

Objective: Early classification of consumption profiles for consumer demand prediction on 6-8pm

Classification of the household electric power consumption

Learned discriminant matching (CONSLEVEL)

1 144

 M^*_W (Low)

 M_B^* (Low vs. High)

Classification of the household electric power consumption

Learned discriminant matching (CONSLEVEL)

 M^*_W (Low)

Preliminary results

Table 2: k-Nearest Neighbor classification error rates					
	\boldsymbol{k}	D	DE	DTW	
	1	0.032	0.165	0.130	
BME	3	0.034	0.208	0.132	
	5	0.062	0.234	0.136	
	7	0.079	0.297	0.191	
	1	0.055	0.173	0.121	
UMD	3	0.111	0.333	0.177	
	5	0.173	0.343	0.225	
	7	0.222	0.378	0.274	
	1	0.056	0.306	0.289	
CONSLEVEL	3	0.044	0.267	0.261	
	5	0.028	0.233	0.239	
	7	0.017	0.233	0.233	
	1	0.094	0.239	0.283	
CONSSEASON	3	0.128	0.228	0.311	
	5	0.205	0.200	0.300	
	7	0.111	0.222	0.306	
	1	0.014	0.012	0.019	
TRAJ	3	0.018	0.017	0.022	
	5	0.022	0.021	0.028	
	7	0.019	0.021	0.026	

Classes compactness/separability by MDS

Preliminary results

m 11. 0 / M

-	Classes	compactness,	/separability	by	MDS
---	---------	--------------	---------------	----	-----

Table 2: K-Ineares	st ne	agnoor cia	ssincation	error rate
	\boldsymbol{k}	D	DE	DTW
	1	0.032	0.165	0.130
BME	3	0.034	0.208	0.132
	5	0.062	0.234	0.136
	7	0.079	0.297	0.191
UMD	1	0.055	0.173	0.121
	3	0.111	0.333	0.177
	5	0.173	0.343	0.225
	7	0.222	0.378	0.274
CONSLEVEL	1	0.056	0.306	0.289
	3	0.044	0.267	0.261
	5	0.028	0.233	0.239
	7	0.017	0.233	0.233
CONSSEASON	1	0.094	0.239	0.283
	3	0.128	0.228	0.311
	5	0.205	0.200	0.300
	7	0.111	0.222	0.306
TRAJ	1	0.014	0.012	0.019
	3	0.018	0.017	0.022
	5	0.022	0.021	0.028
	7	0.019	0.021	0.026

Preliminary results

Figure: The learned discriminative matching for the characters "c", "o", "l", "e", "u" and "a" of TRAJ data (UCI ML)