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Partitioning clustering algorithms

Partitioning clustering algorithms

- Let X = {x1, ..., xN}, be N samples with x i ∈ Rd

- {m1, ...,mK} be the set of K centroids (prototype, codevector,...), K << N and mi ∈ Rd

- The Voronoi region Ri around the centroid mi is defined by the set of vectors in Rd for which
mi is the nearest vector:

Ri = {z ∈ Rd/i = arg min
j
‖z −mj‖2} (1)

Figure: Voronoi (Dirichlet) tessellation around centroids

- Vornoi regions are convex and linearly separable (Linde and Buzo 1980)
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Partitioning clustering algorithms

Batch k-means

Objective Partitioning a finite data set X to construct a Voronoi tesselation of K regions.

- Starting from the finite data set X , k-means algorithm moves iteratively the K centroids
to the arithmetic means of their Voronoi sets {Ck}k=1,...K

- {m1, ...,mK} are obtained by minimising the empirical error:

K∑
k=1

∑
x∈Ck

‖x −mk‖2 (2)

Ck = {x ∈ X/k = arg min
j
‖x −mj‖2} (3)

In the case of Euclidean distance divergence measure, solution of Eq. (2) reduces to the
barycenter:

mk =
1
|Ck |

∑
x∈Ck

x (4)
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Partitioning clustering algorithms

Batch k-means

Algorithm: Batch k-means
1: Input: X , K
2: Output: {C1, ...,CK}
3: Initialisation: select K centroids {m1, ...,mK}, randomly from X
4: repeat
5: Cluster assignment:

compute the sets Ck associated to each centroid mk by using Eq. (3)
6: Centroid update:

move each centroid to the barycentre of Ck by using Eq. (4)
7: return to step 5
8: until no changes on {m1, ...,mK}
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Partitioning clustering algorithms

Fuzzy c-means

Objective Fuzzy clustering introduces the concept of hard and fuzzy partitioning to extend the
notion of membership to clusters

- Let AK×N be the vector space of K × N real matrices over R.
- Given X , N ≥ K ≥ 2, and AK×N the fuzzy k-partition space of X :

M = {U ∈ AK×N/uji ∈ [0, 1]}, ∀j ∈ [K ], ∀i ∈ [N] (5)

s.t.
∑
j∈[K ]

uji = 1, ∀i ∈ [N]1

0 <
∑
i∈[N]

uji < N, ∀j ∈ [K ]

1[N] = {1, ...,N}
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Partitioning clustering algorithms

Fuzzy c-means

The Fuzzy c-means identifies clusters as fuzzy sets by learning the membership matrix U and C
the set of K centroids minimizing the clustering loss:

J(U,C) =
∑
i∈[N]

∑
j∈[K ]

(uji )
α‖xi − cj‖2, (6)

s.t.
∑
j∈[K ]

uji = 1, ∀i ∈ [N]

- α controls the fuzziness membership function (set to 2 usually)
- Higher values of α tends to learn a uniform membership function
- For α = 1, c-means leads to the hard k-means clustering
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Partitioning clustering algorithms

Fuzzy c-means

The minimization of Eq. (6) is done by introducing Lagrangian function for each sample i :

Li =
∑
j∈[K ]

(uji )
α‖xi − cj‖2 + λi (

∑
j∈[K ]

(uji )− 1) (7)

The the derivatives of the sum of Li w.r.t. uji and cj are set to 0, that yields the iteration
scheme of these equations:

u−1ji =
∑
k∈[K ]

( ‖xi − cj‖
‖xi − ck‖

)2/(α−1)

(8)

cj =

∑
i∈[N](uji )

αxi∑
i∈[N](uji )

α
(9)

The soft partitioning is thus obtained when no significant changes is reached on U and C .
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Partitioning clustering algorithms

k-medoids, Partitioning Around Medoids (PAM)

Objective PAM aim is to search for k representative samples (called medoid) among a data set.
The k clusters are built by assigning each sample to the closest medoid.

PAM algorithm consists of two phases:

- BUILD phase: an initial partition is find by successive selection of medoids until k
representative have been found.

- SWAP phase: attempt to improve the set of k medoids retained during the BUILD phase
based on a swap process to improve the quality of the partition.
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Partitioning clustering algorithms

k-medoids, Partitioning Around Medoids (PAM)

Algorithm: BUILD
1: Input: D {a dissimilarity matrix of general term d(i, j)}, K
2: Output: {m1, ...,mK} {k medoids}
3: Initialization: select m1 as the sample minimizing the distance to the rest of samples in X
4: repeat
5: {Search for the kth medoid mk k ∈ {2, ...,K} }
6: for all i ∈ [N] {i candidate to be mk } do
7: for all j ∈ [N] {j a voter} do
8: compute the contribution of j to the selection of i : Cji = max(Dj − d(i, j), 0)

{Dj being the distance between j and its closest yet selected medoid }
9: end for
10: Compute the total contribution of the candidate i : Ci =

∑
j∈[N] Cji

11: end for
12: Retain as mk the sample that maximizes Ci
13: until the selection of mK
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Partitioning clustering algorithms

k-medoids, Partitioning Around Medoids (PAM)

Algorithm: SWAP

1: Input: {m1, ...,mK} {k medoids selected during BUILD}
2: Output: {m∗1 , ...,m

∗
K} {k medoids}

3: for all (i, h) i ∈ [N] , h ∈ [N] {i medoid, h non medoid } do
4: Compute the contribution of each j ∈ [N] to the swap of i by h:
5: { Dj is the distance of j to the closest medoid }
6: if (Dj ≤ min(d(j, i), d(j, h))) then

Cj(i,h) = 0 { j is neutral }
7: else
8: if (d(j, i) ≤ min(d(j, h),Dj )) then

Cj(i,h) = min(d(j, h),Dj )− d(j, i) (disagree)
9: else
10: if (d(j, h) < min(d(j, i),Dj )) then

Cj(i,h) = d(j, h)− min(d(j, i),Dj ) (agree)
11: end if
12: end if
13: end if
14: Compute the total contribution C(i,h) =

∑
j∈[N] Cj(i,h)

15: end for
16: Select the pair (i, h)∗ that minimizes C(i,h)

17: if C(i,h)∗ > 0 then
Stop

18: else
Swap the pair (i, h)∗ and go to step 3.

19: end if
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Partitioning clustering algorithms

k-medoids, Partitioning Around Medoids (PAM)

Wines data 2:

- Gives the description of 177 wines by 13 features, issues from the same region (Pedmont, Itakly),

- Derived from three different cultivars: Nebbiolo (e.g., that composes mainly Barolo wine), Barberas and
Grignolino grapes.
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These two components explain 55.22 % of the point variability.

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = wines.sc, k = 3)

Average silhouette width :  0.27

n = 177 3  clusters  Cj
j :  nj | avei∈Cj  si

1 :   74  |  0.24

2 :   54  |  0.23

3 :   49  |  0.34

2M. Forina, C. Armanino, M. Castino and M. Ubigli. Vitis, 25:189-201 (1986)
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Partitioning clustering algorithms

Self-Organizing Map (SOM)
Objective Partitioning a finite data set X into K clusters, where centroids are constrained to lie
in a one- or two-dimensional manifold in the feature space (i.e. constrained topological map).
SOM can be viewed as a constrained version of k-means clustering.

- Consider a rectangular grid of K = q1 × q2 (i.e. one cell per centroid c j ∈ Rd )
- Each centroid c j is parametrised w.r.t. an integer coordinate pair

l j ∈ {1, ...q1} × {1, ...q2}
- Choose small random values to initialise the centroids c j

- x ∈ X are processed one at a time, to find the closest c j ∈ Rd

- For the closest centroid c j define Nj the set of its centroid neighbours (Nj includes c j

itself). Nj includes the centroids ck topologically close to c j (i.e. the distance between l j
and l k lower than a given threshold r)

- Move centroids ck ∈ Nj toward x :

ck = ck + α (x − ck ) α ∈ [0, 1] (10)

or by giving more weight to centroids that are topologically closer

ck = ck + α h(‖l k − l j‖) (x − ck ) (11)

e.g., h(x) = exp(−x2

2σ2 )
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Partitioning clustering algorithms

Self-Organizing Map (SOM)

Figure: Self-Organizing Map

Algorithm: SOM
1: Input: X , q1, q2 (K = q1 × q2)
2: Output: two-dimensional visualisation of {C1, ...,CK}
3: Initialisation:

a) assign small random values to the K centroids {c1, ..., cK},
b) Assign randomly the K centroids on the 2-D grid

4: repeat
5: At each time, present an input x ∈ X and determine the winner centroid c i∗ :

i∗ = arg min
i∈[K ]3

‖x − c i‖
6: Update the centroids in Ni∗ by Eq. (11)
7: until no changes on {c1, ..., cK}

3
[K ] = {1, ...,K}
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Partitioning clustering algorithms

Self-Organizing Map (SOM)

alcohol
malic acid
ash
ash alkalinity
magnesium

tot. phenols
flavonoids
non-flav. phenols
proanth
col. int.

col. hue
OD ratio
proline

Wine data
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Partitioning clustering algorithms

Self-Organizing Map (SOM)

Batch version of SOM: Centroids are updated once all x ∈ X assigned to the closest centroid
by:

ck =

∑N
i=1 h(c(x i ), ck ) x i∑N
i=1 h(c(x i ), ck )

where the weight function h(ck , ck′ ) decreases smoothly with ‖lk − l ′k‖.

Comments
- For a small enough neighborhood size, all Ni are singleton sets and SOM version leads to
the online or batch version of k-means clustering.

- Since SOM is a constrained version of k-means, it is important to check the validity of the
constraints w.r.t the given problem.

- Reasonable constraints for SOM should not lead to much higher clustering error-loss E(X )
Eq. (2) than for k-means:

E(X/k-means) < E(X/SOM)
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Partitioning clustering algorithms

Kernel Clustering

Objective
- If the clusters are non-linearly separable in the original space (i.e. input space), clustering
algorithms are limited,

- clustering algorithms can be enhanced by using an appropriate non-linear mapping from
the original space (Input space) to a higher dimensional feature space F , where standard
clustering methods can be applied to extract linearly separable clusters (see Fig.4).

4S. Saeid Soheily-Khah, A Douzal-Chouakria, E. Gaussier. Generalized k-means-based clustering for temporal
data under weighted and kernel time warp
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Kernel clustering

Kernel methods: principal
Main ingredients of the kernel methods:

- Input Data are embedded into a vector space called the feature space F .
- Mapping the data via a nonlinear mapping function enables the use of the same tools for
discovering nonlinear patterns.

- Linear relations are sought among the images of the input data in the feature space.
- The algorithms are implemented in such a way that the coordinates of the embedded
points are not needed, only their pairwise inner products.

- The pairwise inner products can be computed efficiently directly from the original data
items using a kernel function.
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Kernel clustering

Larger feature space to get the separability

The idea: If the data are not linearly separable, then mapping the data into a larger feature
space (or adding features), the data might become linearly separable
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Kernel clustering

How to define the Feature space

Explicit way
- Adding features: for instance mapping x = (x1, x2)

Φ(x) = (x1, x2, x
2
1 , x

2
2 , sin(x1), sin(x2), ...)

- Many explicit descriptions, which one to retain ? which dimension ?

- The inner product requires many computations !

Implicit way
- Seek for a function κ that corresponds to the inner product into the feature space

κ(xi , xj ) =< Φ(xi ),Φ(xj ) >

- Some Valid kernels (positive semi-definite) are proposed
-> Polynomial of degree p: κp(xi , xj ) = (c + xTi xj )

p , p ∈ N

-> Gaussian: κ(xi , xj ) = e
−
‖xi−xj‖

2

2.σ2 , σ ∈ R
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Kernel clustering

From the implicit to the explicit description

The polynomial kernel with p = 2 , c = 0 for x = (x1, x2), y = (y1, y2):

κp(x, y) = (c + xT y)p

as the inner product, it is easy to find some corresponding explicit descriptions:

Φ(x) = (x1.x2, x
2
1 , x

2
2 , x2.x1) or Φ(x) = (x21 , x

2
2 ,
√
2x1.x2)

- But, how to find it in general for a given kernel κ ?
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Kernel clustering

From the implicit to the explicit description

- For a finit set X = {xi}Ni=1

- Let K [κij ] (Gram matrix) be an N × N matrix, symmetric definite positive, thus can be
diagonalized as

K = VΛVT

- V = [v1, ...vr ] be the N × r eigenvector matrix, with VT V = Ir the r × r identity matrix

- diag(Λ) = (λ1, ...λr ) is the r eigenvalues, λ1 > ... > λr > 0 (r the rank of K)

We can check easily that for the explicit description:

Φ(xi ) = (
√
λ1vi1, ...,

√
λrvir ) ⇒ < Φ(xi ),Φ(xj ) >= κij

-vij being the ith component of the eigenvector vj . For a given test point x , its explicite
coordinates are given by the projections onto the eigenvectors by:

< v j ,Φ(x) >=
N∑
i=1

vij k(x i , x)
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Kernel clustering

Distances, norms, centering in the feature space
Norm of Φ(x)

‖Φ(x)‖2 =
√
‖Φ(x)‖22 =

√
< Φ(x),Φ(x) > =

√
κ(x, x)

Normalized Φ(x)

Φ̂(x) =
Φ(x)

‖Φ(x)‖

Kernel between normalized feature vectors

κ̂(x, y) =< Φ̂(x), Φ̂(y) >=<
Φ(x)

‖Φ(x)‖
,

Φ(y)

‖Φ(y)‖
>=

< Φ(x),Φ(y) >

‖Φ(x)‖ ‖Φ(y)‖
=

κ(x, y)√
κ(x, x)κ(y, y)

Distance between feature vectors

‖Φ(x)− Φ(y)‖2 = < Φ(x)− Φ(y),Φ(x)− Φ(y) >

= < Φ(x),Φ(x) > + < Φ(y),Φ(y) > −2 < Φ(x),Φ(y) >

= κ(x, x) + κ(y, y)− 2κ(x, y)
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Kernel clustering

Kernel k-means

Let CΦ = {cΦ
1 , ..., c

Φ
K} be the set of K centroids in the feature space

The Voronoi region RΦ
j in F of cΦ

i is defined as:

RΦ
j = {xΦ ∈ F/j = arg min

i∈[K ]
‖xΦ − cΦ

i ‖} (12)

The cluster (Voronoi set) πΦ
j in the feature space defined by the centroid cΦ

j is:

πΦ
j = {x ∈ X/j = arg min

i∈[K ]
‖Φ(x)− cΦ

i ‖} (13)

Φ(x) being the image of x by the mapping Φ.

The set of Voronoi regions in F defines a Voronoi tessellation of the feature space (linearly
separable regions).
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Kernel clustering

Kernel k-means

The main steps:

1. Project X into the feature space F by means of a non-linear mapping Φ

2. Select K centroids {cΦ
1 , ..., c

Φ
K}, picked randomly from X (image of X )

3. Compute the cluster πΦ
j of each center cΦ

j by Eq. (13)

4. Update cΦ
j in F :

cΦ
j =

1
|πΦ

j |

∑
x∈πΦ

j

Φ(x) (14)

5. Repeat steps 3. and 4. until no changes on {cΦ
1 , ..., c

Φ
K}

However, for Eq. (13) and (15), Φ is not explicitly known in general !!!
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Kernel clustering

Kernel k-means
Thanks to kernel trick, Eq. (13) and (15) can be computed. First given

cΦ
j =

1
|πΦ

j |

∑
xi∈πΦ

j

Φ(xi) (15)

‖Φ(x)− cΦ
j ‖ can be expanded by using the scalar product and the kernel trick5:

‖Φ(x)− cΦ
j ‖

2 = < Φ(x),Φ(x) > + < cΦ
j , c

Φ
j > −2 < Φ(x), cΦ

j >

= < Φ(x),Φ(x) > + <
1
|πΦ

j |

∑
xi∈πΦ

j

Φ(xi),
1
|πΦ

j |

∑
xi∈πΦ

j

Φ(xi) >

−2 < Φ(x),
1
|πΦ

j |

∑
xi∈πΦ

j

Φ(xi) >

= κ(x, x) +
1
|πΦ

j |2
∑

xi∈πΦ
j ,xk∈π

Φ
j

κ(xi , xk )− 2
1
|πΦ

j |

∑
xi∈πΦ

j

κ(x, xi ) (16)

5‖Φ(xi)− Φ(xj)‖2 = κ(xi , xi ) + κ(xj , xj)− 2κ(xi , xj)
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Kernel clustering

Kernel k-means

Algorithm: Kernel k-means
1: Input: X , K
2: Output: partition {πΦ

1 , ..., π
Φ
K} of X

3: Initialization: select K centroids {c1, ..., cK}, picked randomly from X
4: repeat
5: Assign each x ∈ X to its closest cluster by using Eq. (16)
6: Update the K clusters πΦ

j by Eq. (13) and (16)
7: until no changes on {πΦ

1 , ..., π
Φ
K}
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Kernel clustering

Kernel machinery and interpretability

- Kernel methods are well known to be effective in dealing with nonlinear machine learning
problems

- Kernel methods are in particular required to analyse complex data as sequences, time
series or graphs.

- However, to interpret and analyse the obtained results, it is often required to restore in
the input space the results obtained in the feature space, by using pre-image estimation
methods6.

6Phuong, T. T. T., Douzal-Chouakria, A., Yazdi, S. V., Honeine, P., Gallinari, P. (2020). Interpretable time
series kernel analytics by pre-image estimation. Artificial Intelligence, 103342.
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Spectral clustering

Spectral Clustering

- Spectral clustering is a popular method that uses eigenvectors of a matrix derived from
the data

- Several algorithms have been proposed in the literature, using in slightly different ways the
eigenvectors obtained.

- The normalized cut spectral algorithm is in the heart of the main proposed spectral
clustering algorithms.
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Spectral clustering

Spectral clustering: Normalized cuts

Spectral clustering has a strong connection with graph theory. Let X = {x1, ..., xN}, be N
samples to cluster.

- From X , a weighted graph G = (V, E,W ) can be defined,

- V = [N] the set of N vertices (i.e., nodes),

- E the set of edges connecting the vertices,

- W is an (N × N) affinity matrix (assumed nonnegative and symmetric). W specifies how
likely two nodes are connected (i.e., belong to the same group)

Partitioning N samples into K groups remains to decompose V into K disjoint sub-graphs:

V = ∪Kl=1Vl and ∀k, l ∈ [K ], k 6= l Vk ∩ Vl = ∅ (17)
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Spectral clustering

Normalized cuts: some useful functions

Given two sub-graphs A, B of V, some basic functions are introduced to quantify the
connections between two subgraphs, or a subgraph to the rest:

links(A,B) =
∑

i∈A,j∈B
Wij (18)

it measures the total weighted connections from A to B. The degree of A is defined as its total
links to the rest:

degree(A) = links(A,V) (19)

and linkratio quantifies the proportion of connections from A to B among the connections of A:

linkratio(A,B) =
links(A,B)

degree(A)
(20)
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Spectral clustering

Normalized cuts

Particularly,

- linkratio(A,A), that measures how many links stay within A,
- linkratio(A,V \ A), that measures how many links escape from A

have a particular interest in clustering context, with the objective of tight connections within
subgraphs and loose connections between subgraphs.

Thus, the goodness clustering criteria of a partition PK
V , related to the the K-way normalized

associations or normalized cuts are defined as:

knassoc(PK
V ) =

1
K

K∑
l=1

linkratio(Vl ,Vl ) (to maximize)

kncuts(PK
V ) =

1
K

K∑
l=1

linkratio(Vl ,V \ Vl ) (to minimize)
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Spectral clustering

Normalized cuts

Thus, the goodness clustering criteria of a partition PK
V , related to the the K-way normalized

associations or normalized cuts are defined as:

knassoc(PK
V ) =

1
K

K∑
l=1

linkratio(Vl ,Vl ) (to maximize) (21)

kncuts(PK
V ) =

1
K

K∑
l=1

linkratio(Vl ,V \ Vl ) (to minimize) (22)

Remarks:
- Maximizing (21) and minimizing (22) are achieved simultaneously as

knassoc(PK
V ) + kncuts(PK

V ) = 1.
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Spectral clustering

Normalized cuts: formalization

Partition matrix CN×K

- Let CN×K = [C1, ...,CK] be an indicator matrix for the partition PK
V , with Cil = 1 if

i ∈ Vl , 0 otherwise, i ∈ V, l ∈ [K ]

- the column Cl is a binary indicator for the subgraph Vl ,

- columns of C satisfy exclusive constraints: C × 1K = 1N (i.e. strong partition)

Degree matrix DN×N

- DN×N = Diag(W 1N) is a diagonal matrix built from W 1N, the i-th term di being the
degree of the node i
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Spectral clustering

Normalized cuts: formalization

Thus, some useful matrix expressions:

links(Vl ,Vl ) = ClTW Cl (23)

degree(Vl ) = ClTD Cl (24)

linkratio(Vl ) =
ClTW Cl
CT
l D Cl

(25)

The K-way normalized cut problem can be formalized as:

maximize E(C) =
1
K

K∑
l=1

ClTW Cl
ClTD Cl

(26)

s.t. C ∈ {0, 1}N×K (binary matrix constraint)

C 1K = 1N (exclusive constraints)
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Spectral clustering

Normalized cuts: formalization

The problem (26) is NP-complete (even for K = 2), thus a tractable solution is obtained by two
main steps:

1. Simplify and relax the formulation in (26) into an eigenvalue problem,

2. Discretize the obtained continuous solution to obtain a binary partition C

First, the problem (26) can be simplified by considering a normalized C , then turns the discrete
problem into a tractable continuous optimization problem which leads to:

E(C) =
1
K

tr(ZT W Z) (27)

s.t. ZT D Z = IK (exclusive constraints with IK the identity matrix)

with, Z = C(CT D C)−1/2

Remark: Zl column is obtained by dividing the Cl column by the square root of the degree of
Vl , namely, the l-th diagonal term of CT D C
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Spectral clustering

Normalized cuts: formalization

A known solution for the problem (27) is obtained by setting the solution Z∗ = D1/2Z to be
the K top eigenvectors of D−1/2 W D−1/2 (normalized Laplacian),

The second step is to transform Z∗ back to the space of partition matrices, the idea is to apply
the reverse normalization function that scales C to Z :

C = Diag(diag−1/2(Z ZT))Z (28)

An other way, defines C by row normalizing the obtained Z matrix.

A discretization can thus be obtained, for instance, by assigning each node i to the class Cl that
maximizes Cil .
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