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Adaptive approaches

Unified formalism for time series proximity measures



Time series structure

Temporal Data

Definition
- A kind of sequence data:

- Ordered set of observations
- Temporal order criterion

Temporal data are ubiquitous
- Web User Behavior Analysis

- Dynamic Social Network Analysis

User Sentiment Analysis

- Electrical Load consumption Analysis for energy saving: smart grids, smart
meters, ...

- Analysis of sensor network data: intelligent building and homes, electrical
vehicles, ...etc.



Learning from time series: Motivation

Time series analysis

o Clustering time series: building groups from unlabeled time series
prototype extraction, dimensionality reduction, ...

o Time series classification: time series assignments to known classes

o discriminating times series: finding models (functions, rules,...) to differentiate
time series classes, localizing discriminant sub-sequences

o Multidimensional exploration of time series datasets estimating relative
proximities, optimizing a given criterion in a lower dimensionality space

@ Multidimensional exploration: MDS, factorial approaches,...
@ Supervised approaches, semi-supervised (time series totally, partially) labeled,...

@ Unsupervised approaches (unlabeled time series)



Proximity measures between time series

Categories of proximity measures

@ Values-based proximity measures

e without time warping: all L, norm
e with time warping: dynamic time warping, String edits, Fréchet distance (Lo norm or
Chybechev-norm)

@ Behavior-based proximity measures (warp vs. no warp)

@ Behavior and values based proximity measures (warp vs. no warp)



Proximity measures between time series

Notations

S1 = (u1, ..., up) and t; = (t11, ..., tp1)
Sy = (v1,...,vg) and to = (t12, ..., tg2)
d2 = (tq2 — t12) the duration of Sy and q its length
General assumptions
e 01 < 4o

°ep#q
e t; and ty are irregular




Proximity measures between time series

Preprocessing time series

o Centering

o re-sampling

v
/N

Xs=r Xs'r




Proximity measures between time series

Values-based proximity measures

S1 = (u1,...,up) and t1 = (t1, ..., tp)
52 = (V1, Vpy Vpt1, -y Vq) and t, = (tl, vty oty ey l’q)

i=1

1
P 2
Example: Euclidean distance (L2 norm) §.(S;,S,) = (Z(”" _ Vi)2)

@ Invariance over time permutations

@ Closeness on values

@ Time series of the same duration and length



Proximity measures between time series

Values-based proximity measures

L: a set of all possible mapping between S; and S, r € L defined by a sequence of m

pairs:
r = ((u17V1)7~~~7(u3/‘7Vb,')»(uél(,'+1)7Vb(,url))y"':(upvvq))
with a; € {1,..,p}, b; € {1, .., q},
ai=b;=1and a;m =p, bm =q

and verifying for i € {1,..,m — 1} (ordering constraint):

Uagjyqy = or Vp = or




Proximity measures between time series

Values-based proximity measures

Let us consider a new definition of the mapping cost:
2
=" > (us —w,)
i=1,..,m

Rq: a norm 1 as a divergence between aligned values is also used.

Sprw(S1, S2) = min|r| = min( >~ (v = v)*)

i=1,..,m

Min{sum(|uai - vbil))




Proximity measures between time series

Values-based proximity measures
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Figure: Three possible alignments (paths) between x; and x;
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Figure: The optimal alignment path between two sample time series‘with time warp (left); without



Proximity measures between time series

Other variants: a different path cost...

We note |r| the mapping cost representing the maximum span between coupled
observations (Lo norm):

[rl = max |uas — vp,|
i=1,..,m !

0F (51, 52) = min|r| = min(_max_|us; — vs|)

Min{Max{|uai - vioi|))

Fréchet



Proximity measures between time series

Other variants: a constrained path...

(b) (c) I

Figure: Speed up DTW using constraints: (a)Sakoe-chiba band (b)Asymmetric sakoe-chiba band
(c)ltakura parallelogram



Proximity measures between time series

W implementation

S1 = (u1, ..., up), S2 = (v1, ..., vq) and c(uj; v;) a cost function
- Basic steps of the DP algorithm of the DTW(S;, S)
© D(1;j) = Y, cluivi); j € [Liq]
@ D(ii1) = Yj_y c(ukiva)i i € [Lip]
© D(iij) = min{D(i — 1;j — 1), D(i — 1)), D(i:j — 1)} + c(uyi v})

i€[1;plije(lq]
The time cost of building this matrix is O(pq)



Proximity measures between time series

lllustration (1)
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Proximity measures between time series

DTW path

DTW path

152




Proximity measures between time series

Obtained alignment

Mapping



Proximity measures between time series

lllustration (2)

@ 15 synthetic time series
@ 3 classes: F; ={1,..5}, F> = {6,..10} and F3 = {11,..15}

Fr = {A(t)/A(t) = g(t) +2t+ 3+ ¢}
Fo = {fh(t)/h(t)=p—g(t) +2t+3+¢}
Fs = {f(t)/f(t) = 4g(t) =3 + ¢}

- g(t): a random discrete function,

= E(g(1)) _ s
- e~ N(0,1), =
- 2t + 3: a linear trend effect. =




Proximity measures between time series

lllustration (2)
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@ Both the Euclidean distance and the dynamic time warping give S; closer to Sy
than to §;,

° dE(S,'7 Sk) =4.24 < dE(S,', SJ) =15.13 < dE(Sj7 Sk) =16.15

© dany(Si, Sk) = 6 < dyew(5i, Sj) = 29 < daew (Sj, Sk) = 29



Proximity measures between time series

Clustering time series
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Proximity measures between time series

Behavior-based proximity measures

- 51, S are of similar behavior < V [t;, ti+1] they increase or decrease simultaneously
(monotonicity) with the same growth rate

- 51, S are of opposite behavior < V [t;, ti11] when S; increases, Sp decreases and
vice-versa with a same growth rates (in absolute value)

Main techniques to recover time series behaviors
@ Slopes, derivatives, ... comparison

o Ranks comparison (Kendall, Spearman coefficients)

@ Pearson correlation coefficient



Proximity measures between time series

Behavior based proximity measures

@ slopes, derivatives, ... comparison

S1 = (u1, ..y tp), S2 = (vi, ...y Vp)
t; = (tl,..., tp)

(NI

P
u; — uj Vi — Vi
Sderiv(S1,52) = (Z( = )2>

— ti+1— tiy1 — ¢



Proximity measures between time series

Behavior-based proximity measures

o Kendall and Spearman conventional similarity between ordered variables

flu,u)) = 1 if uyy<uf
= =1 if u> u{
= 0if uy=ul
St = (f(ur, w), f(ur, u3), .., FUp—1, up))
S5 = (f(vi,v2), f(va,v3), s F(Vp—1, vp))
Kendall(51,5,) = cor(S57,55)
Remark: i =1,..., p assumed independent, overestimation of the behavior proximity,

ignores growth intensity



Proximity measures between time series

Behavior-based proximity measures

Let r(u;) be the rank of u;

ST = (r(w),...,r(up))

S5 o= (r(v), e r(vp))

Spearman(S1,5,) = cor(Sf,55)

Remark: i =1, ..., p assumed independent,overestimation of the behavior proximity.



Proximity measures between time series

Behavior-based proximity measures

@ Pearson correlation coefficient

Z,—,,-/(Ui = upr)(vi = vir)
VS (= )2 [ (v = vir)?

Cor(51,%) =

o Overestimate the behavior proximity (involves all pairs of observations)

o sensitive to tendency effects

o generally used for a mapping not involving time distortion, but easily generalized to
mapping r including time distortion



Proximity measures between time series

Behavior-based proximity measures

@ Temporal correlation coefficient

Py (”a (i+1) ”a‘)(vb(i+1) - V)
\/Z, 1 (’-’a i+1) Ua, \/Z b(iy1) Vb,-)2

cort(S1, S2)

cort = 1 < Similar behaviors,
cort = —1 < Opposite behaviors,
cort = 0 < Different behaviors
Noise sensitive



Proximity measures between time series

[llustration of cor vs cort distribution
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(a) cort(Fy, F2), (b) corT(F1, F3)) (c) CORT(F,, F3),
(d)cor(Fi, F2), (e) cor(F1, F3), (f) cor(Fz, F3)



Proximity measures between time series

Behavior and values based proximity measures

@ Basic behavior and values proximity measure: a weighted linear function
combining values and behavior proximity measure

o Adaptive proximity measure

2

Dy(S1,52) = F(B(S1, $2)) - V(S1, S2) with £(x) = TToelcd

, k>0

2.0
L

100 % value K=0
f(x)=2/(1 +exp(k x))

1.5

1.0

0.5

100 % behavior | K=6

0.0

CORT

k: the contribution of values and of behavior to D (to be learned)
B : the behavior based proximity
V . the values based proximity



Proximity measures between time series

Behavior and values based proximity measures

Example:
- Let r = ((u1,v1), .-, (up, vq)) (without time warping)
- 0 the proximity on values and cort the proximity on behavior

The adaptive proximity measure between S; and S;:

Dk(Sl7 52) = f(cort(Sl, 52)) . 55(51, 52)

Remark: V and B should be evaluated on the same mapping r



Proximity measures between time series

Unified formalism

Table 1
A unified formalism for time series metrics.

Type R dr) Co(r) Metric
Values RcM m _ "
tél Ha dppy = min E |uag,—vy, |
R=1r} m 5 12 - n : 12
(El(u.—w) ) di = c(rg) = (Zl(ul,vl) )
= i=
Behavior R={ry} - Cor(r) dewr — 1—Cor(ro)
R=1ro) - Cort(r) deore = 1-Cort(rg)
ke - Cor(r) diwicor = mip(1-Cor(r))
ReM - Cort(r) diwore = min(1—Cort(r))
ve o Rel g v Gty .
(Zl(u.—v,f) DE{™ = ooy (Z (u,—v,)?)
= i=1
R=1ro} n 12 Cort(r) N -
(Zl(u,—v,)z) DEfm = 1+explkz Cort{re)) (Zl(u.—v,)a)
= i=
Beh. RcM m Cor(r) ) "
R Ug —Vp, DIWE =min 14“‘?,( Cam’:l%'l Ug, —Vp, |
RcM & Cort(r)

m
Ug —Vi TWE — mi 2 o _
i1 o Vb, DIW; _IJ"R(]+exp[kf¢m!y)l']‘“ﬂ' vb")
i=
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