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This exam is not intended to trap you, but to test your knowledge and to see what
you have learned in this class. So there is no need to cheat.

Question 1 (4 pt)

1.1 Explain the Occam Rasor principle.

1.2 Explain the backtracking line-search algorithm.

1.3 What are the universal approximators seen in class? Does the property of
"universal approximation" ensure that the empirical error on any training
set will be equal to 0 (Explain why)?

1.4 Present and explain the three assumptions in semi-supervised learning?

Question 2 (4 pt)
Consider the following binary classification :
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)
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)
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2.1 Draw the points in a orthonormal basis of dimension 2.

2.2 We consider the perceptron algorithm for learning; will the algorithm con-
verge ?

2.3 We initialize the weights and the bias to zero, and we fix the learning rate
to 1. We consider that the order of points are taken is anti-clockwise when

beginning from the point
(
1
2

)
, i.e.

(
−1
0

)
then

(
2
−1

)
.... What are the

weights found by the algorithm after convergence in this case?

2.4 What is the equation of the decision boundary?

2.5 What is the theoretical maximum number of iterations that ensures the con-
vergence of the algorithm ?
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Question 3 (2 pt)
We apply the Adaboost algorithm over a training set of size 5;

S = {(xi, yi); i ∈ {1, . . . , 5}} ∈ (X × {−1,+1})5

3.1 At step 1, the examples are assigned uniform weights: ∀i,D1(i) =
1
5
. We

suppose that after learning the first classifier h1 : X → {−1,+1} the latter
misclassifies 1 example 1 of S. Estimate the error ϵ1 =

∑
i:h1(xi )̸=yi

D1(i)
and deduce the weight α1 associated to h1 found by the algorithm.

3.2 Estimate new weights D2 of misclassified and well classified examples by
h1.

Question 4 (10 pt)
We consider the CEM algorithm for partitioning a collection C = (xi)1≤i≤N of
N examples represented in a vector space of dimension d, into K groups G =
(Gk)1≤k≤K .

Classification Expectation Maximization1

Begin with an initial partition G(0).
ℓ← 0
while L(C,Θ(ℓ+1),G(ℓ+1))− L(C,Θ(ℓ),G(ℓ)) > ϵ do

E-step Estimate the posterior probabilities using the current parameters Θ(ℓ):

∀k = {1, . . . , K}E[tik | xi,G(ℓ),Θ(ℓ)] =
π
(ℓ)
k P (xi | G(ℓ)

k , θ
(ℓ)
k )∑K

j=1 π
(ℓ)
j P (xi | G(ℓ)

j , θ
(ℓ)
j )

C-step Assign to each example xi its partition, the one for which the poste-
rior probability is maximum. Note G(ℓ+1) this new partition

M-step Estimate the new parameters Θ(ℓ+1) which maximizeL(C,Θ(ℓ),G(ℓ+1))

ℓ← ℓ+ 1
end while

1Gilles Celeux, Gérard Govaert. A classification EM algorithm for clustering and two stochas-
tic versions. Computational Statistics & Data Analysis. 14(3), pp. 315–332, 1992.
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Where,

L(C,Θ, G) =
N∑
i=1

K∑
k=1

tik logP (xi, Gk, θk)

=
N∑
i=1

K∑
k=1

tik logP (Gk)︸ ︷︷ ︸
πk

P (xi | Gk, θk)

is the complete log-likelihood; Θ is the set of parameters; and
ti = (ti1, . . . , tik, . . . , tiK) is the cluster vector indicator of observation xi (i.e.
xi ∈ Gk iff tik = 1 and ∀j ̸= k; tij = 0).

4.1 Explain the algorithm seen in class.

4.2 Show that at each iteration ℓ, the complete log-liklihood L(C,Θ, G) in-
creases i.e.

∀ℓ ≥ 0;L(C,Θ(ℓ+1), G(ℓ+1)) ≥ L(C,Θ(ℓ), G(ℓ))

4.3 Deduce that the algorithm converges to a local maximum of L(C,Θ, G).

4.4 We suppose that samples of different clusters are generated by multivariate
normal distributions:

P (x | Gk, θk) =
1√

(2π)d|Σk|
e−

1
2
(x−µk)

⊤Σ−1
k (x−µk).

Further, we suppose the following:

(H1) The covariance matrices of all groups are the identity matrix:
∀k ∈ {1, . . . , K};Σk = Idd;

(H2) The probability of clusters is the uniform probability:
∀k ∈ {1, . . . , K}, P (Gk) =

1
K

.

What is the set of parameters Θ in this case?

4.5 Deduce that the complete log-likelihood writes:

L(C,Θ, G) = −1

2

N∑
i=1

K∑
k=1

tik∥xi − µk∥2 + Constant (1)
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4.6 For which values of µk; k ∈ {1, . . . , K}, Equation (1) is maximized?

4.7 With assumptions (H1) and (H2), the CEM algorithm reduces to which clus-
tering algorithm seen in class?
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