Machine Learning Fundamentals

Final Exam
2018-2019

Massih-Reza Amini
Duration: 2 hours, authorised documents: Slides of the course

1. (1 pt) Describe the Structural Risk Minimization principle.
2. (1 pt) Why a small training error is not sufficient to determine the efficiency of a learning algorithm?
3. (2 pt) Consider the following training set

$$
S=\{((+1,+1),+1),((-1,+1),+1),((-1,-1),-1),((+1,-1),+1)\}
$$

where for each pair (for ex. $((+1,+1),+1)$), the first element corresponds to the vector representation of an observation (here $(+1,+1)$) and the second term to its class (here +1). We apply the perceptron algorithm to separate the observations of both classes, by supposing that the initial weights $\omega^{(\mathbf{0})}=(0,0,0)$; and the learning rate $\eta=1$. Turn the algorithm on this example by showing the weights obtained after each update.
4. (2 pt) We apply the Adaboost algorithm over a training set of size 10 ;

$$
S=\left\{\left(\mathbf{x}_{i}, y_{i}\right) ; i \in\{1, \ldots, 10\}\right\} \in(\mathcal{X} \times\{-1,+1\})^{10}
$$

4.1 At step 1 examples are assigned a uniform weight: $\forall i, D_{1}(i)=\frac{1}{10}$. We suppose that after the training phase, the first classifier $h_{1}: \mathcal{X} \rightarrow$ $\{-1,+1\}$ misclassifies 3 examples of S.
Estime the error $\epsilon_{1}=\sum_{i: h_{1}\left(\mathbf{x}_{i}\right) \neq y_{i}} D_{1}(i)$ and deduce the weights α_{1} associated to h_{1} found by the algorithme.
4.2 Estimate new weights D_{2} for the misclassified and well classified examples by h_{1}.
5. (12 pt) We consider a mono-label multi-class classification problem where observations $\mathbf{x}=\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ are described by a discret vector of size d in which each characteristic is an integer. This corresponds for example to the representation of douments in the basis of number of times each word of
a given vocabulary occurs in the document or the representation of images in the basis of the intensity of their pixels.
Here, we suppose that oservations are generated by a probabilistic model as follows :each characterisitc $n_{j}, j \in\{1, \ldots, d\}$ of an observation \mathbf{x} belonging to class $y=k$ is the realisation of a corresponding random variable X_{j} which has a probability of occurence equal to $\theta_{j \mid k}$
5.1 For a given observation $\mathbf{x}=\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ and for the sake of presentation we note

$$
\mathbb{P}(\mathbf{x} \mid y=k)=\mathbb{P}\left(\left(X_{1}=n_{1}, \ldots, X_{d}=n_{d}\right) \mid y=k\right)
$$

In this case, show that $\forall k \in\{1, \ldots, K\}$,

$$
\begin{align*}
\mathbb{P}(\mathbf{x} \mid y=k)= & \mathbb{P}\left(X_{1}=n_{1} \mid y=k\right) \tag{1}\\
& \prod_{j=2}^{d} \mathbb{P}\left(X_{j}=n_{j} \mid X_{1}=n_{1}, \ldots, X_{j-1}=n_{j-1}, y=k\right)
\end{align*}
$$

5.2 Explain why

$$
\forall k \in\{1, \ldots, K\}, \mathbb{P}\left(X_{1}=n_{1} \mid y=k\right)=\binom{n}{n_{1}} \theta_{1 \mid k}^{n_{1}}\left(1-\theta_{1 \mid k}\right)^{n-n_{1}},
$$

where $\binom{n}{n_{1}}=\frac{n!}{n_{1}!\left(n-n_{1}\right)!}$ is the binomial coefficient; and $n=n_{1}+n_{2}+\ldots+n_{d}$.
5.3 From the two previous question deduce that

$$
\mathbb{P}(\mathbf{x} \mid y=k)=\frac{n!}{n_{1}!n_{2}!\ldots n_{d}!} \prod_{j=1}^{d} \theta_{j \mid k}^{n_{j}}
$$

