Machine Learning Fundamentals Final Exam 2018-2019

Massih-Reza Amini Duration: 2 hours, authorised documents: Slides of the course

- 1. (1 pt) Describe the Structural Risk Minimization principle.
- 2. (1 pt) Why a small training error is not sufficient to determine the efficiency of a learning algorithm?
- 3. (2 pt) Consider the following training set

$$S = \{((+1,+1),+1), ((-1,+1),+1), ((-1,-1),-1), ((+1,-1),+1)\}$$

where for each pair (for ex. ((+1, +1), +1)), the first element corresponds to the vector representation of an observation (here (+1, +1)) and the second term to its class (here +1). We apply the perceptron algorithm to separate the observations of both classes, by supposing that the initial weights $\omega^{(0)} = (0, 0, 0)$; and the learning rate $\eta = 1$. Turn the algorithm on this example by showing the weights obtained after each update.

4. (2 pt) We apply the Adaboost algorithm over a training set of size 10;

 $S = \{ (\mathbf{x}_i, y_i); i \in \{1, \dots, 10\} \} \in (\mathcal{X} \times \{-1, +1\})^{10}$

4.1 At step 1 examples are assigned a uniform weight: $\forall i, D_1(i) = \frac{1}{10}$. We suppose that after the training phase, the first classifier $h_1 : \mathcal{X} \rightarrow \{-1, +1\}$ misclassifies 3 examples of S. Estimate the error $c = \sum_{i=1}^{n} D_i(i)$ and deduce the weights c.

Estime the error $\epsilon_1 = \sum_{i:h_1(\mathbf{x}_i) \neq y_i} D_1(i)$ and deduce the weights α_1 associated to h_1 found by the algorithme.

- 4.2 Estimate new weights D_2 for the misclassified and well classified examples by h_1 .
- 5. (12 pt) We consider a mono-label multi-class classification problem where observations $\mathbf{x} = (n_1, n_2, \dots, n_d) \in \mathbb{N}^d$ are described by a discret vector of size d in which each characteristic is an integer. This corresponds for example to the representation of douments in the basis of number of times each word of

a given vocabulary occurs in the document or the representation of images in the basis of the intensity of their pixels.

Here, we suppose that oservations are generated by a probabilistic model as follows :each characterisite $n_j, j \in \{1, \ldots, d\}$ of an observation **x** belonging to class y = k is the realisation of a corresponding random variable X_j which has a probability of occurence equal to $\theta_{j|k}$

5.1 For a given observation $\mathbf{x} = (n_1, n_2, \dots, n_d) \in \mathbb{N}^d$ and for the sake of presentation we note

$$\mathbb{P}(\mathbf{x} \mid y=k) = \mathbb{P}((X_1 = n_1, \dots, X_d = n_d) \mid y=k)$$

In this case, show that $\forall k \in \{1, \dots, K\}$,

$$\mathbb{P}(\mathbf{x} \mid y = k) = \mathbb{P}(X_1 = n_1 \mid y = k)$$

$$\prod_{j=2}^{d} \mathbb{P}(X_j = n_j \mid X_1 = n_1, \dots, X_{j-1} = n_{j-1}, y = k)$$
(1)

5.2 Explain why

$$\forall k \in \{1, \dots, K\}, \mathbb{P}(X_1 = n_1 \mid y = k) = \binom{n}{n_1} \theta_{1|k}^{n_1} (1 - \theta_{1|k})^{n - n_1},$$

where $\binom{n}{n_1} = \frac{n!}{n_1!(n-n_1)!}$ is the binomial coefficient; and $n = n_1 + n_2 + \ldots + n_d$.

5.3 From the two previous question deduce that

$$\mathbb{P}(\mathbf{x} \mid y = k) = \frac{n!}{n_1! n_2! \dots n_d!} \prod_{j=1}^d \theta_{j|k}^{n_j}$$