
Mathematical Foundations of Machine Learning
Final Exam · 2022-2023

Please treat each problem on a separate copy
Duration: 2 hours, authorized documents: lecture slides and notes

Problem 1 is mandatory, and you have the choice of treating Problem 2 or
Problem 3.

Problem 1 - Mandatory (over 5 points)
Markov Decision Processes and Reinforcement Learning

A driver wants to park her car as close as possible to the restaurant. There are
T slots. The driver visits the slots one by one (starting from slot 1 to slot T ). Each
slot is either available or taken. The driver cannot see if a slot is available unless
she is in front of the slot. When she sees a slot, she can decide to park now or
to continue driving and hope to find a slot that is closer to the restaurant. If she
chooses slot t, she earns a reward R(t). If she reaches slot T and this slot is not
available, she must go home and her reward is 0.

We assume that the probability for each slot to be available is p ∈ [0, 1].
Question 1. [3 pts] We first consider that the driver knows p and wants to maxi-
mize her expected reward.

1.1 [1 pt] Formulate the problem as a Markov decision process. Explain what
is the state space that you consider and the actions available in each of the
states. If it helps, you can use a drawing.

1.2 [1 pt] Write down Bellman’s equation, explain its signification, and write
an algorithm that computes the optimal decision rule.

1.3 [1 pt] Assume that p = 0.5, R = t and T = 10. Compute the optimal
policy and its value.
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Question 2. [2 pts] We now assume that p is unknown to the driver and needs to
be learnt while parking. Your goal is to propose a learning algorithm to solves the
optimal parking problem.

Indication: You can use one of the two approaches below. You are also wel-
come to propose your own solution.

• Use a Bayesian model and assume that the prior distribution on p is uniform
on [0, 1]. Can you compute the probability of a slot to be free if k out of the
first n slots where empty? Can you use this to formulate the problem as a
Markov decision process with an extended state space? Describe then how
you use this to compute an optimal decision rule?

• Assume that you have access to a simulator of the model and use a Q-
learning approach (with any kind of value function approximation). Hint:
for this you would need a MDP with an extended state space. What state
space will you use? Describe an algorithm that use this to compute an
optimal solution. Will it be efficient or would you need some approximation
method?

You have to choose between Problem 2 or Problem 3

Problem 2 (over 15 points)
Nesterov acceleration

The point of this problem is to provide a regret-based analysis of the Nesterov
accelerated gradient (NAG) algorithm, a famous method for minimizing smooth
convex functions.

Let f : Rd → R be a differentiable convex function, and let x∗ ∈ argmin f be
a global minimizer of f (not necessarily unique). We assume throughout that f is
Lipschitz smooth, i.e., there exist some L ≥ 0 such that

∥∇f(x′)−∇f(x)∥ ≤ L∥x′ − x∥ for all x, x′ ∈ Rd. (1)

You can take as given the following descent inequality that we studied in class: if
x+ = x− γ∇f(x) for some x ∈ Rd, γ > 0, then

f(x+) ≤ f(x)− γ(1− Lγ/2)∥∇f(x)∥2 (Descent)
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The version of the NAG algorithm that we will consider proceeds as

yt+1 = xt −
1

L
∇f(xt)

zt+1 = zt − γt∇f(xt)

xt+1 = λt+1yt+1 + (1− λt+1)zt+1

(NAG)

where γt > 0 and λt+1 ∈ [0, 1] are parameters to be determined. The point of the
problem is to derive the rate with which the algorithm converges to the minimum
value of f .

Question 1. [1 pt] Show that

f(yt+1)− f(xt) ≤ −
1

2L
∥∇f(xt)∥2

Question 2. [2 pts] Show that Let wt = γt∇f(xt), and consider the sequence
of loss functions ℓt(x) = ⟨wt, x⟩. Using the regret analysis for FTRL/OGD (or
otherwise), show that zt enjoys the regret guarantee

T∑
t=1

γt⟨∇f(xt), zt − x∗⟩ ≤ ∥x1 − x∗∥2

2
+

1

2

T∑
t=1

γ2
t ∥∇f(xt)∥2

Question 3. [3 pts] For all t ≥ 1, show that

f(xt)− f(x∗) ≤ λt

1− λt

[f(yt)− f(xt)] + ⟨∇f(xt), zt − x∗⟩

Hint: use the convexity of f to upper bound f(xt)−f(x∗), and show as an interim
step that xt − zt =

λt

1−λt
(yt − xt).

Question 4. [1 pt] Combining the above steps (or otherwise), show that

T∑
t=1

γt[f(xt)−f(x∗)]−
T∑
t=1

λtγt
1− λt

[f(yt)−f(xt)] ≤
∥x1 − x∗∥2

2
+

T∑
t=1

Lγ2
t [f(xt)−f(yt+1)]

Question 5. [1 pt] Refactor the above to show that

T∑
t=1

Atf(yt+1)−
T∑
t=1

Btf(yt) +
T∑
t=1

Ctf(xt) ≤ f(x∗) · Γt +
∥x1 − x∗∥2

2
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where

At = Lγ2
t Bt =

λtγt
1− λt

Ct =
γt

1− λt

− Lγ2
t and Γt =

T∑
t=1

γt

Question 6. [2 pts] Show that

1

Γt

[
ATf(yT+1)−B1f(y1) +

T∑
t=2

[At−1 −Bt]f(yt) +
T∑
t=1

Ctf(xt)

]
≤ f(x∗)+

∥x1 − x∗∥2

2Γt

To move forward, we will choose γt and λt so that only the term f(yT+1)
survives above.

Question 7. [2 pts] Show that At−1 −Bt = 0 = Ct if and only if

λt = 1− 1

Lγt
and γt+1 =

1 +
√
1 + 4L2γ2

t

2L

Question 8. [3 pts] Show that the choice above gives

ΓT ≥
T 2

4L

and conclude that the initialization λ1 = 0 yields

f(yT+1)− f(x∗) ≤ 2L∥x1 − x∗∥2

T 2

If you have treated Problem 2, don’t treat Problem 3

Problem 3 (over 15 points)
RankBoost Algorithm

In this part we are interested in the analysis of a learning-to-rank algorithm called
“RankBoost”. Learning-to-rank is involved in the design of modern applications
like search engines, information extraction platforms, or movie recommendation
systems. The ordering in which the documents or movies are returned is an impor-
tant component of the system in these applications. Due to resource constraints,
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ranking is preferred over binary classification in such cases; since it may be incon-
venient or even impossible to display or process all elements that a classifier has
labeled as relevant. For example, a user will only look at the top 10 or so results
of a typical search engine, and not all the pertinent documents that are provided
in answer to a query. A ranking problem can be specified as follows:

Observations (documents, movies, etc.) are described in an input spaceX ⊆ Rd;
we suppose that there exists an unknown distribution D over X × X which gen-
erates the pairs of examples, and, we denote by f : X × X → {−1, 0,+1} a
preference function defined as:

∀(x, x′) ∈ X × X ; f(x, x′) =


+1, if x′ is preferred over x;
0, if x′ and x have the same preference;
−1, if x is preferred over x′.

A ranking algorithm learns a scoring function h : X → R in a way such that
for a pair (x, x′), the score of a preferred example is higher than the score of an
no-preferred example. In the contrary case, the pair is said to be misranked by h.

We suppose that we have a labeled training set S = ((xi, x
′
i, yi))1⩽i⩽m ∈

(X ×X ×{−1,+1})m, with yi = f(xi, x
′
i) ̸= 0,∀i ∈ {1, . . . ,m}. For a a scoring

function h : X → R, and we are interested in bounding the empirical error of
the ranking loss on S:

R̂(h) =
1

m

m∑
i=1

1yi(h(x′
i)−h(xi))⩽0 (2)

where 1π = 1 if the predicate π is true and 0 otherwise.
The pseudo-code of the Rankboost algorithm is given below. This algorithm

combines prediction functions in the classe H = {h : X → {0, 1}} in order
to create a better ranking function in terms of empirical ranking error. As the
Adaboost algorithm, Ranboost trains a base ranker ht : X → {0, 1} at each
iteration t ∈ {1, . . . , T} and maintains a distribution Dt over training examples in
S = ((xi, x

′
i, yi))1⩽i⩽m ∈ (X × X × {−1,+1})m. Each base ranker ht is chosen

with respect to the smallest value of ϵ−t − ϵ+t , with

ϵst =
m∑
i=1

Dt(i)1yi(ht(x′
i)−ht(xi))=s; for any s ∈ {−1, 0,+1}. (3)

We simplify the notation ϵ−1
t and ϵ+1

t with respectively ϵ−t and ϵ+t .
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Algorithm 1 RankBoost(S = ((xi, x
′
i, yi))1⩽i⩽m)

1: for i← 1 to m do
2: D1(i)← 1

m

3: end for
4: for t← 1 to T do
5: Choose ht ← base ranker inH with smallest ϵ−t − ϵ+t
6: Set αt ← 1

2
log

ϵ+t
ϵ−t

7: Set Zt ←
∑m

i=1Dt(i)e
−αtyi(ht(x′

i)−ht(xi)) ▷ normalization factor
8: for i← 1 to m do
9:

Dt+1(i)←
Dt(i)e

−αtyi(ht(x′
i)−ht(xi))

Zt

(4)

10: end for
11: end for
12: return g ←

∑T
t=1 αtht

Question 1. [2 pts] Explain each of the quantities ϵ+t , ϵ−t and ϵ0t ? What is the
meaning of “smallest value of ϵ−t − ϵ+t ”?

We can show that the following equality holds at each iteration t:

ϵ+t + ϵ−t + ϵ0t = 1. (5)

The distribution over the examples is updated with respect to the equation (4)
(lines 7-10).

Question 2. [2 pts] After T iterations, the algorithm outputs a scoring function
g : x 7→

∑T
t=1 αtht(x). Show that the ranking loss for g, R̂(g), is bounded by:

R̂(g) ⩽ 1

m

m∑
i=1

e−yi(g(x
′
i)−g(xi))

Question 3. [2 pts] With respect to the definitions of lines 2 and 7 of Algorithm
1; show that

1

m

m∑
i=1

e−yi(g(x
′
i)−g(xi)) =

T∏
t=1

Zt
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Question 4. [1 pt] Following the definition of ϵs; s ∈ {−1, 0,+1} (3) show that
∀t ∈ {1, . . . , T}, Zt can be rewritten as:

Zt = ϵ+t e
−αt + ϵ−t e

αt + ϵ0t (6)

Question 5. [1 pt] For which value of αt, Zt is minimized. Is this coherent with
the choice of αt in the algorithm 1 (line 6)?
Question 6. [1 pt] By plugging back the value of αt obtained previously in Zt;
show that

Zt = 2
√

ϵ+t ϵ
−
t + ϵ0t .

Question 7. [2 pts] From Equation (5), show that

4ϵ+t ϵ
−
t = (1− ϵ0t )

2 − (ϵ+t − ϵ−t )
2

Deduce that

Zt = (1− ϵ0t )

√
1− (ϵ+t − ϵ−t )

2

(1− ϵ0t )
2

+ ϵ0t

Question 8. [4 pts] We now suppose that ϵ0t = 0; ∀t, using the inequality ∀z ∈ R;
1− z ⩽ e−z show that

Zt ⩽ exp

(
−(ϵ+t − ϵ−t )

2

2

)
Deduce that if there exists γ, such that ∀t ∈ {1, . . . , T}, 0 < γ ⩽ (ϵ+t − ϵ−t ),

then:

R̂(g) ⩽ exp

(
−γ2T

2

)
What is the interpretation of this result?
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